@article{walsh_tollison_brochu_shaw_diveley_chou_law_kirk_gale_peng_2022, title={Single-Cell-Based High-Throughput Ig and TCR Repertoire Sequencing Analysis in Rhesus Macaques}, volume={208}, ISSN={["1550-6606"]}, url={https://doi.org/10.4049/jimmunol.2100824}, DOI={10.4049/jimmunol.2100824}, abstractNote={Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired H and L chains of Igs and VDJ and VJ chains of TCRs from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single-cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. We used custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single-cell immune repertoire profiling. Using these rhesus-specific assays, we sequenced Ig and TCR repertoires in >60,000 cells from cryopreserved rhesus PBMCs, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single-cell level.}, number={3}, journal={JOURNAL OF IMMUNOLOGY}, author={Walsh, Evan S. and Tollison, Tammy S. and Brochu, Hayden N. and Shaw, Brian I and Diveley, Kayleigh R. and Chou, Hsuan and Law, Lynn and Kirk, Allan D. and Gale, Michael, Jr. and Peng, Xinxia}, year={2022}, month={Feb}, pages={762–771} } @article{baptissart_bradish_jones_walsh_tehrani_marrero-colon_mehta_jima_oh_diehl_et al._2022, title={Zac1 and the Imprinted Gene Network program juvenile NAFLD in response to maternal metabolic syndrome}, volume={2}, ISSN={["1527-3350"]}, url={https://doi.org/10.1002/hep.32363}, DOI={10.1002/hep.32363}, abstractNote={Background and Aims Within the next decade, NAFLD is predicted to become the most prevalent cause of childhood liver failure in developed countries. Predisposition to juvenile NAFLD can be programmed during early life in response to maternal metabolic syndrome (MetS), but the underlying mechanisms are poorly understood. We hypothesized that imprinted genes, defined by expression from a single parental allele, play a key role in maternal MetS-induced NAFLD, due to their susceptibility to environmental stressors and their functions in liver homeostasis. We aimed to test this hypothesis and determine the critical periods of susceptibility to maternal MetS. Approach and Results We established a mouse model to compare the effects of MetS during prenatal and postnatal development on NAFLD. Postnatal but not prenatal MetS exposure is associated with histological, biochemical, and molecular signatures of hepatic steatosis and fibrosis in juvenile mice. Using RNA sequencing, we show that the Imprinted Gene Network (IGN), including its regulator Zac1, is up-regulated and overrepresented among differentially expressed genes, consistent with a role in maternal MetS-induced NAFLD. In support of this, activation of the IGN in cultured hepatoma cells by overexpressing Zac1 is sufficient to induce signatures of profibrogenic transformation. Using chromatin immunoprecipitation, we demonstrate that Zac1 binds the TGF-β1 and COL6A2 promoters, forming a direct pathway between imprinted genes and well-characterized pathophysiological mechanisms of NAFLD. Finally, we show that hepatocyte-specific overexpression of Zac1 is sufficient to drive fibrosis in vivo. Conclusions Our findings identify a pathway linking maternal MetS exposure during postnatal development to the programming of juvenile NAFLD, and provide support for the hypothesis that imprinted genes play a central role in metabolic disease programming.}, journal={HEPATOLOGY}, author={Baptissart, Marine and Bradish, Christine M. and Jones, Brie S. and Walsh, Evan and Tehrani, Jesse and Marrero-Colon, Vicmarie and Mehta, Sanya and Jima, Dereje D. and Oh, Seh Hoon and Diehl, Anna Mae and et al.}, year={2022}, month={Feb} }