Gavin Williams Paulsel, T. Q., & Williams, G. J. (2023, September 15). Current State-of-the-Art Toward Chemoenzymatic Synthesis of Polyketide Natural Products. CHEMBIOCHEM, Vol. 9. https://doi.org/10.1002/cbic.202300386 Welch, S. D., Cossin, J., Paulsel, T. Q., & Williams, G. J. (2022). Targeted enzyme modifications enable regioselective biosynthesis of fluorinated polyketides. CHEM CATALYSIS, 2(10), 2440–2443. https://doi.org/10.1016/j.checat.2022.09.042 Kalkreuter, E., Bingham, K. S., Keeler, A. M., Lowell, A. N., Schmidt, J. J., Sherman, D. H., & Williams, G. J. (2021). Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. NATURE COMMUNICATIONS, 12(1). https://doi.org/10.1038/s41467-021-22497-2 Li, Y., Reed, M., Wright, H. T., Cropp, T. A., & Williams, G. J. (2021). Development of Genetically Encoded Biosensors for Reporting the Methyltransferase-Dependent Biosynthesis of Semisynthetic Macrolide Antibiotics. ACS SYNTHETIC BIOLOGY, 10(10), 2520–2531. https://doi.org/10.1021/acssynbio.1c00151 Calzini, M. A., Malico, A. A., Mitchler, M. M., & Williams, G. J. (2021). [Review of Protein engineering for natural product biosynthesis and synthetic biology applications]. PROTEIN ENGINEERING DESIGN & SELECTION, 34. https://doi.org/10.1093/protein/gzab015 Mitchler, M. M., Garcia, J. M., Montero, N. E., & Williams, G. J. (2021). [Review of Transcription factor-based biosensors: a molecular-guided approach for natural product engineering]. CURRENT OPINION IN BIOTECHNOLOGY, 69, 172–181. https://doi.org/10.1016/j.copbio.2021.01.008 Gayen, A. K., Nichols, L., & Williams, G. J. (2020). An artificial pathway for polyketide biosynthesis. Nature Catalysis, 3(7), 536–538. https://doi.org/10.1038/s41929-020-0483-4 Zin, P. P. K., Williams, G. J., & Ekins, S. (2020). Cheminformatics Analysis and Modeling with MacrolactoneDB. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63192-4 Kalkreuter, E., Bingham, K. S., Keeler, A. M., Lowell, A. N., Schmidt, J. J., Sherman, D. H., & Williams, G. J. (2020, April 25). Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase (Vol. 4). Vol. 4. https://doi.org/10.1101/2020.04.23.058214 Zin, P. P. K., Williams, G., & Fourches, D. (2020). SIME: synthetic insight-based macrolide enumerator to generate the V1B library of 1 billion macrolides. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00427-6 Malico, A. A., Nichols, L., & Williams, G. J. (2020). Synthetic biology enabling access to designer polyketides. Current Opinion in Chemical Biology, 58, 45–53. https://doi.org/10.1016/j.cbpa.2020.06.003 Malico, A. A., Calzini, M. A., Gayen, A. K., & Williams, G. J. (2020, December). Synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis of isoprenoids (September, 10.1007/s10295-020-02306-3, 2020). JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, Vol. 47, pp. 1181–1181. https://doi.org/10.1007/s10295-020-02327-y Malico, A. A., Calzini, M. A., Gayen, A. K., & Williams, G. J. (2020). Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. Journal of Industrial Microbiology & Biotechnology, 47(9-10), 675–702. https://doi.org/10.1007/s10295-020-02306-3 Lund, S., Hall, R., & Williams, G. J. (2019). An Artificial Pathway for Isoprenoid Biosynthesis Decoupled from Native Hemiterpene Metabolism. ACS Synthetic Biology, 8(2), 232–238. https://doi.org/10.1021/acssynbio.8b00383 Lund, S., Courtney, T., & Williams, G. J. (2019). Cover Feature: Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production (ChemBioChem 17/2019). ChemBioChem, 8. https://doi.org/10.1002/cbic.201900494 Kalkreuter, E., Keeler, A. M., Malico, A. A., Bingham, K. S., Gayen, A. K., & Williams, G. J. (2019). Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli. ACS Synthetic Biology, 8(6), 1391–1400. https://doi.org/10.1021/acssynbio.9b00078 Kalkreuter, E., CroweTipton, J. M., Lowell, A. N., Sherman, D. H., & Williams, G. J. (2019). Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units. Journal of the American Chemical Society, 141(5), 1961–1969. https://doi.org/10.1021/jacs.8b10521 Lund, S., Courtney, T., & Williams, G. J. (2019). Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production. ChemBioChem, 20(17), 2217–2221. https://doi.org/10.1002/cbic.201900135 Lund, S., Courtney, T., & Williams, G. (2019, February 26). Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production (Vol. 2). Vol. 2. https://doi.org/10.26434/chemrxiv.7765241.v1 Zin, P. P. K., Williams, G., & Fourches, D. (2018). Cheminformatics-based enumeration and analysis of large libraries of macrolide scaffolds. Journal of Cheminformatics, 10(1). https://doi.org/10.1186/s13321-018-0307-6 Kasey, C. M., Zerrad, M., Li, Y., Cropp, T. A., & Williams, G. J. (2018). Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology. ACS Synthetic Biology, 7(1), 227–239. https://doi.org/10.1021/ACSSYNBIO.7B00287 Kalkreuter, E., & Williams, G. J. (2018). Engineering enzymatic assembly lines for the production of new antimicrobials. Current Opinion in Microbiology, 45, 140–148. https://doi.org/10.1016/j.mib.2018.04.005 Carpenter, S. M., & Williams, G. J. (2018). Extender Unit Promiscuity and Orthogonal Protein Interactions of an Aminomalonyl-ACP Utilizing Trans-Acyltransferase from Zwittermicin Biosynthesis. ACS Chemical Biology, 13(12), 3361–3373. https://doi.org/10.1021/acschembio.8b00867 Nazari, M., Malico, A. A., Ekelöf, M., Lund, S., Williams, G. J., & Muddiman, D. C. (2017). Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI. Analytical and Bioanalytical Chemistry, 410(3), 953–962. https://doi.org/10.1007/s00216-017-0570-9 Koryakina, I., Kasey, C., McArthur, J. B., Lowell, A. N., Chemler, J. A., Li, S., … Williams, G. J. (2017). Inversion of Extender Unit Selectivity in the Erythromycin Polyketide Synthase by Acyltransferase Domain Engineering. ACS Chemical Biology, 12(1), 114–123. https://doi.org/10.1021/acschembio.6b00732 Musiol-Kroll, E. M., Zubeil, F., Schafhauser, T., Härtner, T., Kulik, A., McArthur, J., … Weber, T. (2017). Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCII. ACS Synthetic Biology, 6(3), 421–427. https://doi.org/10.1021/acssynbio.6b00341 Ladner, C. C., & Williams, G. J. (2015). Harnessing natural product assembly lines: structure, promiscuity, and engineering. Journal of Industrial Microbiology & Biotechnology, 43(2-3), 371–387. https://doi.org/10.1007/s10295-015-1704-8 Williams, G. (2015). Harnessing the promiscuity of natural product biosynthesis: A platform for engineering pathways with new specificities. Planta Medica, 81(11). https://doi.org/10.1055/S-0035-1556155 Randall, S. M., Koryakina, I., Williams, G. J., & Muddiman, D. C. (2014). Evaluating nonpolar surface area and liquid chromatography/mass spectrometry response: an application for site occupancy measurements for enzyme intermediates in polyketide biosynthesis. Rapid Communications in Mass Spectrometry, 28(23), 2511–2522. https://doi.org/10.1002/rcm.7051 Walsh, S., Gardner, L., Deiters, A., & Williams, G. J. (2014). Intracellular Light-Activation of Riboswitch Activity. ChemBioChem, 15(9), 1346–1351. https://doi.org/10.1002/cbic.201400024 Ye, Z., & Williams, G. J. (2014). Mapping a Ketosynthase:Acyl Carrier Protein Binding Interface via Unnatural Amino Acid-Mediated Photo-Cross-Linking. Biochemistry, 53(48), 7494–7502. https://doi.org/10.1021/bi500936u Ye, Z., Musiol, E. M., Weber, T., & Williams, G. J. (2014). Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase. Chemistry & Biology, 21(5), 636–646. https://doi.org/10.1016/j.chembiol.2014.02.019 Koryakina, I., & Williams, G. J. (2014). Synthetic Biology Approaches For Combinatorial Biosynthesis Of Polyketide Natural Products. Abstracts of Papers for the American Chemical Society. Presented at the 247th National Spring Meeting of the American Chemical Society, Dallas, Texas, USA. Williams, G. J. (2013). Engineering polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Structural Biology, 23(4), 603–612. https://doi.org/10.1016/j.sbi.2013.06.012 Koryakina, I., McArthur, J. B., Draelos, M. M., & Williams, G. J. (2013). Promiscuity of a modular polyketide synthase towards natural and non-natural extender units. Organic & Biomolecular Chemistry, 11(27), 4449. https://doi.org/10.1039/c3ob40633d Williams, G., Koryakina, I., McArthur, J., Draelos, M., Randal, S., & Muddimanl, D. (2013). Reprogramming the Biosynthesis of Natural Products by Directed Evolution. In A. Kantardjieff, P. Asuri, J. L. Coffman, & K. Jayapal (Eds.), Developments in Biotechnology and Bioprocessing (pp. 147–163). https://doi.org/10.1021/bk-2013-1125.ch009 McArthur, J., & Williams, G. J. (2012). Engineering Glycosyltransferases. In S. Lutz & U. T. Bornscheuer (Eds.), The Protein Engineering Handbook (Vol. 3, pp. 303–326). Weinheim: Wiley-HCH. Koryakina, I., McArthur, J., Randall, S., Draelos, M. M., Musiol, E. M., Muddiman, D. C., … Williams, G. J. (2012). Poly Specific trans-Acyltransferase Machinery Revealed via Engineered Acyl-CoA Synthetases. ACS Chemical Biology, 8(1), 200–208. https://doi.org/10.1021/cb3003489 Koryakina, I., Ye, Z., McArthur, J., & Williams, G. J. (2012). Reprogramming the biosynthesis of natural products by directed evolution. Abstracts of Papers of the American Chemical Society. Presented at the 243rd National Spring Meeting of the American Chemical Society, San Diego, CA, USA. Koryakina, I., Neville, J., Nonaka, K., Van Lanen, S. G., & Williams, G. J. (2011). A High-Throughput Screen for Directed Evolution of the Natural Product Sulfotransferase LipB. Journal of Biomolecular Screening, 16(8), 845–851. https://doi.org/10.1177/1087057111413273 Parajuli, N., & Williams, G. J. (2011). A high-throughput screen for directed evolution of aminocoumarin amide synthetases. Analytical Biochemistry, 419(1), 61–66. https://doi.org/10.1016/j.ab.2011.07.037 Ye, Z., Bair, M., Desai, H., & Williams, G. J. (2011). A photocrosslinking assay for reporting protein interactions in polyketide and fatty acid synthases. Molecular BioSystems, 7(11), 3152. https://doi.org/10.1039/c1mb05270e Koryakina, I., & Williams, G. J. (2011). Inside Cover: Mutant Malonyl-CoA Synthetases with Altered Specificity for Polyketide Synthase Extender Unit Generation (ChemBioChem 15/2011). ChemBioChem, 12(15), 2230–2230. https://doi.org/10.1002/cbic.201190070 Koryakina, I., & Williams, G. J. (2011). Mutant Malonyl-CoA Synthetases with Altered Specificity for Polyketide Synthase Extender Unit Generation. ChemBioChem, 12(15), 2289–2293. https://doi.org/10.1002/cbic.201100383 Williams, G. J., Yang, J., Zhang, C., & Thorson, J. S. (2011). Recombinant E. coli Prototype Strains for in Vivo Glycorandomization. ACS Chemical Biology, 6(1), 95–100. https://doi.org/10.1021/cb100267k Williams, G. J., & Thorson, J. S. (2009). Natural Product Glycosyltransferases: Properties and Applications. In Advances in Enzymology - and Related Areas of Molecular Biology (pp. 55–119). https://doi.org/10.1002/9780470392881.ch2 Williams, G. J., & Thorson, J. S. (2008). A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution. Nature Protocols, 3(3), 357–362. https://doi.org/10.1038/nprot.2007.538 Williams, G. J., Goff, R. D., Zhang, C., & Thorson, J. S. (2008). Optimizing Glycosyltransferase Specificity via “Hot Spot” Saturation Mutagenesis Presents a Catalyst for Novobiocin Glycorandomization. Chemistry & Biology, 15(4), 393–401. https://doi.org/10.1016/j.chembiol.2008.02.017 Gantt, R. W., Goff, R. D., Williams, G. J., & Thorson, J. S. (2008). Probing the Aglycon Promiscuity of an Engineered Glycosyltransferase. Angewandte Chemie International Edition, 47(46), 8889–8892. https://doi.org/10.1002/anie.200803508 Williams, G. J., Gantt, R. W., & Thorson, J. S. (2008). The impact of enzyme engineering upon natural product glycodiversification. Current Opinion in Chemical Biology, 12(5), 556–564. https://doi.org/10.1016/j.cbpa.2008.07.013 Nelson, A., Williams, G., Woodhall, T., Farnsworth, L., & Berry, A. (2007). Stereochemically Complementary Biocatalysts Created by Directed Evolution. Synfacts, 2007(2), 0208–0208. https://doi.org/10.1055/s-2006-955791 Williams, G. J., Woodhall, T., Farnsworth, L. M., Nelson, A., & Berry, A. (2006). Creation of a Pair of Stereochemically Complementary Biocatalysts. Journal of the American Chemical Society, 128(50), 16238–16247. https://doi.org/10.1021/ja065233q Williams, G. J., Woodhall, T., Nelson, A., & Berry, A. (2005). Structure-guided saturation mutagenesis of N-acetylneuraminic acid lyase for the synthesis of sialic acid mimetics. Protein Engineering, Design and Selection, 18(5), 239–246. https://doi.org/10.1093/protein/gzi027 Williams, G. J., & Berry, A. (2003). Directed evolution: Creating new enzymes. The Biochemist, 25(4), 13–15. https://doi.org/10.1042/BIO02504013 Williams, G. J., Domann, S., Nelson, A., & Berry, A. (2003). Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proceedings of the National Academy of Sciences, 100(6), 3143–3148. https://doi.org/10.1073/pnas.0635924100