@misc{redan_buhman_novotny_ferruzzi_2016, title={Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment}, volume={7}, ISSN={["2156-5376"]}, DOI={10.3945/an.116.013029}, abstractNote={Interest in the application of phenolic compounds from the diet or supplements for the prevention of chronic diseases has grown substantially, but the efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. Although food and dietary factors have been the focus of intense investigation, the impact of disease states such as obesity or diabetes on their absorption, metabolism, and eventual efficacy is important to consider. These factors must be understood in order to develop effective strategies that leverage bioactive phenolic compounds for the prevention of chronic disease. The goal of this review is to discuss the inducible metabolic systems that may be influenced by disease states and how these effects impact the bioavailability and metabolism of dietary phenolic compounds. Because current studies generally report that obesity and/or diabetes alter the absorption and excretion of these compounds, this review includes a description of the absorption, conjugation, and excretion pathways for phenolic compounds and how they are potentially altered in disease states. A possible mechanism that will be discussed related to the modulation of phenolic bioavailability and metabolism may be linked to increased inflammatory status from increased amounts of adipose tissue or elevated plasma glucose concentrations. Although more studies are needed, the translation of benefits derived from dietary phenolic compounds to individuals with obesity or diabetes may require the consideration of dosing strategies or be accompanied by adjunct therapies to improve the bioavailability of these compounds.}, number={6}, journal={ADVANCES IN NUTRITION}, author={Redan, Benjamin W. and Buhman, Kimberly K. and Novotny, Janet A. and Ferruzzi, Mario G.}, year={2016}, month={Nov}, pages={1090–1104} } @article{zhang_johnson_naderi_chaubal_hunt_schwartz_2016, title={High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides}, volume={29}, ISSN={["1361-6668"]}, DOI={10.1088/0953-2048/29/9/095012}, abstractNote={Bi2Sr2CaCu2Ox (Bi2212)/Ag-alloy wires are manufactured via the oxide-powder-in-tube route by filling Ag/Ag-alloy tubes with Bi2212 oxide precursor, deforming into wire, restacking and heat treating using partial-melt processing (PMP). Recent studies propose several requirements on precursor properties, including stoichiometry, chemical homogeneity, carbon content and phase purity. Here, nanosize oxides produced by nGimat’s proprietary NanoSpray CombustionTM process are used as starting materials to synthesize Bi2212 oxide precursors via solid-state calcination. Oxide powders for wire fill (precursor powder) with precisely controlled stoichiometry and chemical homogeneity containing over 99 vol% of single Bi2212-phase are synthesized. Alkaline-earth cuprate are found to be the only impurity phase in the precursor powders. Phase transformation, carbon release and grain growth during calcination are studied through a series of quench studies. Effects of particle size, surface area, stoichiometry, chemical homogeneity and microstructures of the starting materials on Bi2212 formation and wire transport properties are discussed. Small particle size, high surface area and short diffusion length of the starting materials result in a rapid and homogeneous phase transformation to Bi2212, along with an early and rapid carbon release. The residual carbon in the precursor powder is between 50 and 90 ppm. The strong dependence of transport Jc on precursor stoichiometry indicates that compositional variations within precursor powders should be less than 1.5 mol%. Two Bi-rich and Ca-deficient stoichiometries give higher wire transport critical current density, with the highest being 2520 A mm−2 (4.2 K, 5 T) after 1 bar PMP and 4560 A mm−2 (4.2 K, 5 T) after 100 bar overpressure (OP) processing. The low residual carbon content results in smaller and fewer voids within an OP-processed wire filament. Bi-rich and Ca-deficient stoichiometries and small compositional variations within precursor powders may be a method for engineering uniformly-distributed and high-density Bi2201 intergrowths within Bi2212 grains after PMP.}, number={9}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Zhang, Yun and Johnson, Stephen and Naderi, Golsa and Chaubal, Manasi and Hunt, Andrew and Schwartz, Justin}, year={2016}, month={Sep} } @article{ishmael_rogers_hunte_naderi_roach_straka_schwartz_2015, title={Current Density and Quench Behavior of MgB2/Ga Composite Wires}, volume={25}, ISSN={["1558-2515"]}, DOI={10.1109/tasc.2015.2483597}, abstractNote={Magnesium diboride (MgB 2) is a promising superconductor for many technical applications. Sufficient current densities at required magnetic fields, moderate operational temperature, low raw materials' cost, and an economical manufacturing process have enabled commercial development of MgB 2 wires. Reacted MgB 2, however, is brittle, and applications involving coils and windings with small bend radii are therefore difficult to implement. Furthermore, improvements in the critical current density are needed to expand the range of potential applications. Here, we report on the electrical behavior of novel MgB 2/Ga composite wires produced such that the proximity effect enhances connectivity, allowing the high-temperature anneal typically required for in situ and ex situ MgB 2 wires to be eliminated. Elimination of the high-temperature anneal simplifies MgB 2 manufacturing and has the potential to create a wire that is more tolerant of bending. Here, we present critical current density and quench propagation results for MgB 2/Ga composite wires sheathed in Cu.}, number={6}, journal={IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY}, author={Ishmael, Sasha A. and Rogers, Samuel and Hunte, Frank and Naderi, Golsa and Roach, Christian and Straka, Weston and Schwartz, Justin}, year={2015}, month={Dec} } @article{naderi_schwartz_2014, title={Multiscale studies of processing-microstructure-transport relationships in over- pressure processed Bi2Sr2CaCu2Ox/Ag multifilamentary round wire}, volume={27}, ISSN={["1361-6668"]}, DOI={10.1088/0953-2048/27/11/115002}, abstractNote={Recently, significantly improved transport properties in Bi2Sr2CaCu2Ox/Ag (Bi2212/Ag) multifilamentary round wire (RW) has been achieved by applying 100 atm over-pressure (OP) during partial melt processing (PMP). Despite this significant progress, the microstructural details and phase evolution during the high pressure partial melt processing are poorly understood, and previous studies have focused solely on densification. Here we investigate the processing-microstructure-transport relationships of OP-PMP RWs by comparing the filament microstructure of a PMP wire with that of an OP-PMP wire on multiple length scales. OP affects the microstructure differently in each stage of PMP: it causes grain growth during pre-annealing, increases the peritectic melting temperature in the partial melt, improves oxygen uptake during solidification, and enhances grain connectivity during sintering. It is also found that the increase in transport of OP-PMP wire is related to increase in Bi2212 filament density on multiple length scales. Yet OP-PMP wire shows higher area fraction of filaments with large Bi2201 grains. Thus, to further improve transport, optimization of OP-PMP is essential; in particular the maximum heat treatment temperature should be increased, consistent with the increase in peritectic melt temperature, such that less Bi2201 grains form during processing.}, number={11}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Naderi, G. and Schwartz, J.}, year={2014}, month={Nov} } @article{naderi_schwartz_2014, title={On the roles of Bi2Sr2CuOx intergrowths in Bi2Sr2CaCu2Ox/Ag round wires: c-axis transport and magnetic flux pinning}, volume={104}, ISSN={["1077-3118"]}, DOI={10.1063/1.4871805}, abstractNote={Despite progress in the performance of Bi2Sr2CaCu2Ox (Bi2212)/Ag multifilamentary round wires, understanding the impact of microstructural defects on multiple length scales on electrical transport remains a significant challenge. Many recent studies have focused on porosity, but porosity is not the only factor in determining Jc. The primary impurity in partial-melt processed multifilamentary Bi2212 wires is Bi2Sr2CuOx (Bi2201), which forms as mesoscopic grains and nanoscopic intergrowths. Previously, we showed the destructive effect of Bi2201 grains on transport. Here, we relate scanning transmission electron microscopy results to the Bi2212 coherence length, anisotropic magnetization behavior, and magnetic-field dependent transport to study c-axis transport and the effects of Bi2201 intergrowths on magnetic flux pinning. We show that wide Bi2201 intergrowths are barrier to c-axis transport within Bi2212 grains, whereas narrow (half- and full-cell) Bi2201 intergrowths are not detrimental to c-axis transport and are likely magnetic flux pinning centers. These results have significant impact on the understanding of Bi2212/Bi2201 systems and provide important physical insight towards future improvements in devices based upon wires, film, and junctions.}, number={15}, journal={APPLIED PHYSICS LETTERS}, author={Naderi, G. and Schwartz, J.}, year={2014}, month={Apr} } @article{callaway_naderi_van le_schwartz_2014, title={Statistical analysis of the relationship between electrical transport and filament microstructure in multifilamentary Bi2Sr2CaCu2Ox/Ag/Ag-Mg round wires}, volume={27}, ISSN={["1361-6668"]}, DOI={10.1088/0953-2048/27/4/044020}, abstractNote={After processing, multifilamentary Bi2Sr2CaCu2Ox (Bi2212) round wires have complex microstructures. In this study, the microstructures are analyzed quantitatively using a new statistical method in which filaments are categorized based on the predominant phases observed by cross-sectional scanning electron microscopy (SEM). A Matlab program is created to analyze the SEM micrographs and categorize over 100 filaments within the image. In total, 26 wires, each heat treated differently so as to vary the critical current density (Jc), are studied. In some wires, two distinct cross-sectional areas are analyzed, so a total of 41 cross-sections and 5506 filaments are characterized. Five filament types are defined: filaments containing predominantly Bi2212, filaments containing relatively large Bi2Sr2CuOx (Bi2201) grains, filaments containing relatively large alkaline earth cuprate (AEC) grains but no significant other non-Bi2212 phases, filaments containing relatively large copper-free (CF) grains but no other significant non-Bi2212 phases, and filaments containing relatively large AEC and CF grains. The majority of filaments (78% of all filaments classified) are either predominantly Bi2212 or containing-large-Bi2201 grains. Clear correlations between the number of these two types of filaments and the wire Jc are found; Jc is directly proportional to the percentage of ‘predominantly-Bi2212’ filaments. Although typically 70–90% of the containing-large-Bi2201 filament cross-sections is actually Bi2212 phase, Jc is inversely proportional to the percentage of this type of filament. Surprisingly, the correlations between Jc and the other filament types are weak or non-existent. Furthermore, using high-angle annular dark-field imaging in a scanning transmission electron microscope, Bi2201 intergrowths are found within Bi2212 grains, and results suggest possible differences in the Bi2201 intergrowth densities within Bi2212 grains extracted from predominantly Bi2212 filaments and those from Bi2201-containing filaments. These results indicate that significant enhancements in Bi2212 wire performance require either avoiding the formation of Bi2201, or ensuring complete conversion of Bi2201 to Bi2212.}, number={4}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Callaway, Evan Benjamin and Naderi, Golsa and Van Le, Quang and Schwartz, Justin}, year={2014}, month={Apr} } @article{ishmael_luo_white_hunte_liu_mandzy_muth_naderi_ye_hunt_et al._2013, title={Enhanced Quench Propagation in Bi2Sr2CaCu2Ox and YBa2Cu3O7-x Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator}, volume={23}, ISSN={["1558-2515"]}, DOI={10.1109/tasc.2013.2269535}, abstractNote={The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi2Sr2CaCu2Ox (Bi2212) and YBa2Cu3O7-x (YBCO), quench protection is particularly challenging due to slow normal zone propagation. A previous computational study showed that the quench behavior of HTS magnets is significantly improved if the turn-to-turn electrical insulation is thermally conducting, enhancing 3-D normal zone propagation. Here, a new doped-titania electrical insulation with high thermal conductivity is evaluated. The thermal conductivity of the insulation is measured at cryogenic temperatures, and its chemical compatibility with Bi2212 round wires is determined. Thin layers of the insulation are deposited onto the surface of Bi2212 and YBCO wires, which are then wound into small coils to study the quench behavior. Results show that the critical current and homogeneity of Bi2212 coils are improved relative to coils reacted with mullite insulation. Relative to similar coils with conventional insulation (mullite for Bi2212 and Kapton for YBCO), the turn-to-turn quench propagation is increased by a factor of 2.8 in Bi2212 coils at 4.2 K and self-field and by a factor of 2.5 in YBCO coils at 4.2 K and 5 T. These results indicate that doped-titania insulation may significantly improve Bi2212 and YBCO coils. Increased normal zone propagation velocity enhances quench detection and quench protection, and the thinness of the insulation relative to the most common alternatives increases the magnet winding pack current density and reduces the coil specific heat.}, number={5}, journal={IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY}, author={Ishmael, Sasha and Luo, Haojun and White, Marvis and Hunte, Frank and Liu, X. T. and Mandzy, Natalia and Muth, John F. and Naderi, Golsa and Ye, Liyang and Hunt, Andrew T. and et al.}, year={2013}, month={Oct} } @article{naderi_liu_nachtrab_schwartz_2013, title={Understanding processing-microstructure-properties relationships in Bi2Sr2CaCu2Ox/Ag round wires and enhanced transport through saw-tooth processing}, volume={26}, ISSN={["1361-6668"]}, DOI={10.1088/0953-2048/26/10/105010}, abstractNote={Superconducting magnets generating magnetic fields above 25 T are needed for many scientific applications. Due to fundamental limitations in NbTi and Nb3Sn, such high-field superconducting magnets require alternative high-field conductors. One candidate conductor is round wire composites of Bi2Sr2CaCu2Ox sheathed in a Ag-alloy matrix (Bi2212/Ag). The performance of such wires is sensitive to the heat treatment, so improvements in the critical current density (Jc) require a thorough understanding of the processing–structure–properties relationships. Here we present a two-part study. In part I, a new heat treatment approach, saw-tooth processing (STP), is introduced based upon previous results showing that Bi2212 nucleation is site-saturation limited. The microstructural evolution of Bi2212 filaments during processing is discussed and results from STP are compared with those from other processes. STP is shown to increase Jc by 120% and 70% relative to partial-melt processing at 5 T and self-field respectively, and by 65% and 34% relative to split-melt processing. Yet STP also complicates the heat treatment by introducing a number of new heat treatment variables that affect the grain morphology, phase assemblage and oxygen content of the Bi2212 filaments and thus the transport properties. In part II, the effects of STP heat treatment parameters on the microstructure and transport properties are discussed. It is shown that wires with the highest transport critical current densities primarily have filaments with two types of microstructures, one comprised primarily of highly textured Bi2212 grains, and another with a noticeable amount of Bi2Sr2CuOx with the Bi2212.}, number={10}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Naderi, Golsa and Liu, Xiaotao and Nachtrab, William and Schwartz, Justin}, year={2013}, month={Oct} }