Giorgio Proestos Saha, A. S., Throckmorton, E., Lucier, G., Seracino, R., & Proestos, G. T. (2025). Determining Prestress Losses, Residual Capacity, and Degradation from Testing of Prestressed Concrete Bridge Girders after 56 Years of Service. Journal of Bridge Engineering, 30(2). https://doi.org/10.1061/JBENF2.BEENG-6966 Brodbeck, T. J., Proestos, G. T., & Seracino, R. (2024). A Review of Strut-and-Tie Models for FRP Reinforced Deep Beams. SP-360: Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16). Presented at the SP-360: Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16). https://doi.org/10.14359/51740664 Palipana, D. K., & Proestos, G. T. (2024). Analytical Evaluation of Deep Beams with High-Strength Headed Shear Reinforcement, Part II. ACI Structural Journal, 121(3), 147–158. https://doi.org/10.14359/51740487 Samayoa, J. A., Proestos, G. T., & Kowalsky, M. J. (2024). Behavior of External Socket Connections for the Seismic Design of Bridges. 18th World Conference on Earthquake Engineering (WCEE). Presented at the 18th World Conference on Earthquake Engineering (WCEE), Milan, Italy. Palipana, D. K., & Proestos, G. T. (2024). Behavior of Shear-Critical Concrete Deep Beams Monitored with Digital Image Correlation Equipment. ACI Structural Journal, 121(2), 181–192. https://doi.org/10.14359/51740253 Palipana, D. K., & Proestos, G. T. (2024). Crack Kinematics in Large-Scale Shear Critical Reinforced Concrete Deep Beam Experiments: Towards Improved Aggregate Interlock Constitutive Models. SMiRT-27. Presented at the SMiRT-27, Yokohama, Division I, Japan. Muktadir, G., Kowalsky, M., Proestos, G. T., & Ranjithan, R. (2024). Development of Optimized Bulb-Tee Girders for AKDOT (Final Report No. FHWA-AK-RD-4000(202)/ HFHWY00201). Alaska Department of Transportation and Public Facilities. Muktadir, G., Kowalsky, M., Proestos, G. T., & Ranjithan, R. (2024). Development of Optimized Bulb-Tee Girders for AKDOT. Alaska Department of Transportation and Public Facilities. Proestos, G. T., Seracino, R., Lucier, G., Saha, A. S., & Throckmorton, E. (2024). Evaluation of the Bonner Bridge Girders: Assessing Residual Capacity, Prestress Losses and Degradation of the 56 Year Old Members (Final Report No. FHWA/NC/RP2021-09,). North Carolina Department of Transportation. Proestos, G. T., Seracino, R., Lucier, G., Saha, A. S., & Throckmorton, E. (2024). Evaluation of the Bonner Bridge Girders: Assessing Residual Capacity, Prestress Losses and Degradation of the 56 Year Old Members. North Carolina Department of Transportation. Palipana, D. K., & Proestos, G. T. (2024). Experimental Investigation of Deep Beams with High‑Strength Headed Shear Reinforcement, Part I. ACI Structural Journal, 121(3). https://doi.org/10.14359/51740486 Samayoa, J. A., Proestos, G. T., & Kowalsky, M. (2024). External Pocket and Socket Connections for the Seismic Design of Alaska Bridges (Research Report, No. RD-24-03). Alaska Department of Transportation and Public Facilities. Samayoa, J. A., Proestos, G. T., & Kowalsky, M. (2024). External Pocket and Socket Connections for the Seismic Design of Alaska Bridges. Alaska Department of Transportation and Public Facilities. Palipana, D. K., & Proestos, G. T. (2024). High Yield Strength Headed Reinforcement in Shear Critical Reinforced Concrete Members in Nuclear Facilities. SMiRT-27. Presented at the SMiRT-27, Yokohama, Division I, Japan. Palipana, D. K., Trandafir, A. N., Mihaylov, B. I., & Proestos, G. T. (2024). Quantification of shear transfer mechanisms in reinforced concrete deep beams using measured experimental data. ENGINEERING STRUCTURES, 318. https://doi.org/10.1016/j.engstruct.2024.118711 Han, J., Proestos, G. T., & Pourghaz, M. (2024). Repair Strategies for Waste Transfer Station Concrete Overlays [Final Report]. Environmental Research & Education Foundation. Han, J., Proestos, G. T., & Pourghaz, M. (2024). Repair Strategies for Waste Transfer Station Concrete Overlays. Environmental Research & Education Foundation. Proestos, G. T., Bentz, E. C., & Collins, M. P. (2024). Response of Reinforced Concrete Shell Elements Subjected to In-Plane and Out-of-Plane Shear. ACI Structural Journal, 121(2), 165–180. https://doi.org/10.14359/51740252 Samayoa, J. A., Proestos, G. T., & Kowalsky, M. J. (2024). Shear Forces Developed on External Socket Connections Under Seismic Loads. 18th World Conference on Earthquake Engineering (WCEE). Presented at the 18th World Conference on Earthquake Engineering (WCEE), Milan, Italy. Stuart, A., & Proestos, G. T. (2024). Shell strip experiments and three‐dimensional model for shear critical shell elements subjected to out‐of‐plane loads. Structural Concrete, 11. https://doi.org/10.1002/suco.202400422 Trandafir, A. N., Palipana, D. K., Proestos, G. T., & Mihaylov, B. I. (2024). The importance and use of vertical crack displacements for the assessment of existing reinforced concrete deep beams. ENGINEERING STRUCTURES, 316. https://doi.org/10.1016/j.engstruct.2024.118635 Lee, S., Gupta, A., & Proestos, G. T. (2023). Performance-Based Characterization and Quantification of Uncertainty in Damage Plasticity Model for Seismic Fragility Assessment of Concrete Structures. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 9(1). https://doi.org/10.1061/AJRUA6.RUENG-913 Palipana, D. K., & Proestos, G. T. (2022). Asymmetrical loading of reinforced concrete deep beams monitored with full field-of-view digital image correlation. fib Symposium, 105–112. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85142861610&partnerID=MN8TOARS Stuart, A., & Proestos, G. T. (2022). Concrete Containment Structure Shell Strip Experiments and Single Element Modelling of Shell Elements Subjected to Shear. Transactions, SMiRT-26. Presented at the SMiRT-26, Berlin/Potsdam, Division V, Germany. Trandafir, A., Proestos, G. T., & Mihaylov, B. (2022). Crack Based Assessment of a 4-Meter Deep Beam Test. fib International Congress, 2140–2149. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85143916132&partnerID=MN8TOARS Trandafir, A. N., Proestos, G. T., & Mihaylov, B. I. (2022). Detailed crack‐based assessment of a 4‐m deep beam test specimen. Structural Concrete, 9(1). https://doi.org/10.1002/suco.202200149 Qambar, M., & Proestos, G. T. (2022). Experimental Investigation of Reinforced Concrete Deep Beams with Wide Loading Elements. ACI Structural Journal, 119(4), 239–250. https://doi.org/10.14359/51734497 Trandafir, A., Palipana, D. K., Proestos, G. T., & Mihaylov, B. (2022). Framework for Crack-Based Assessment of Existing Lightly Reinforced Concrete Deep Members. ACI Structural Journal, 119(1), 255–266. https://doi.org/10.14359/51733143 Palipana, D. K., Trandafir, A., Mihaylov, B., & Proestos, G. T. (2022). Framework for Quantification of Shear-Transfer Mechanisms from Deep Beam Experiments. ACI Structural Journal, 119(3), 53–65. https://doi.org/10.14359/51734485 Proestos, G. T., & Palipana, D. K. (2022). High-Strength Headed Reinforcing Bars for Use as Shear Reinforcement in Shear Critical Reinforced Concrete Deep Beams (Research Report No. RD-22-02). Concrete Reinforcing Steel Institute Foundation. Proestos, G. T., & Palipana, D. K. (2022). High-Strength Headed Reinforcing Bars for Use as Shear Reinforcement in Shear Critical Reinforced Concrete Deep Beams. Concrete Reinforcing Steel Institute Foundation. Palipana, D. K., & Proestos, G. T. (2022). Large-Scale Shear Critical Reinforced Concrete Deep Beam Experiments Monitored with Full Field of View Digital Image Correlation Equipment. Transactions, SMiRT-26. Presented at the SMiRT-26, Berlin/Potsdam, Division V, Germany. Trandafir, A. N., Palipana, D. K., Proestos, G. T., & Mihaylov, B. I. (2021). Direct crack-based assessment approach for shear critical reinforced concrete deep beams. fib Symposium, 2021-June, 1398–1407. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85134817277&partnerID=MN8TOARS Palipana, D. K., Trandafir, A. N., Mihaylov, B. I., & Proestos, G. T. (2021). Direct evaluation of shear carrying mechanisms in reinforced concrete deep beams. fib Symposium, 2021-June, 1700–1709. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85134817393&partnerID=MN8TOARS Proestos, G. T., Palipana, D. K., & Mihaylov, B. I. (2021). Evaluating the shear resistance of deep beams loaded or supported by wide elements. Engineering Structures, 226, 111368. https://doi.org/10.1016/j.engstruct.2020.111368 Proestos, G. T., Seracino, R., Lucier, G., Throckmorton, E., Qambar, M., & Lin, S.-H. (2021). Field Evaluation of The Bonner Bridge Girders (Technical Assistance Request Final Report No. 2020-08; p. 31). North Carolina Department of Transportation. Proestos, G. T., Seracino, R., Lucier, G., Throckmorton, E., Qambar, M., & Lin, S.-H. (2021). Field Evaluation of The Bonner Bridge Girders (p. 31). North Carolina Department of Transportation. Kuan, A., Proestos, G. T., Bentz, E. C., & Collins, M. P. (2021). Response of Prestressed Concrete Beams Subjected to Shear and Torsion. ACI Structural Journal, 118(5), 251–261. https://doi.org/10.14359/51732833 Stuart, A., & Proestos, G. T. (2021). Single element method for modelling reinforced concrete shells subjected to combined in-plane and out-of-plane shear. fib Symposium, 2021-June, 1336–1345. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85134815109&partnerID=MN8TOARS Proestos, G. T., Bentz, E. V., & Collins, M. P. (2020). Neglecting compatibility torsions in the design of concrete structures. American Concrete Institute, ACI Special Publication, SP-344, 30–48. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85110322225&partnerID=MN8TOARS Berglund, E. Z., Monroe, J. G., Ahmed, I., Noghabaei, M., Do, J., Pesantez, J. E., … Levis, J. (2020). Smart Infrastructure: A Vision for the Role of the Civil Engineering Profession in Smart Cities. Journal of Infrastructure Systems, 26(2). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000549 Moratti, M., Gaia, F., Martini, S., Tsioli, C., Grecchi, G., Casotto, C., … Proestos, G. T. (2019). A methodology for the seismic multilevel assessment of unreinforced masonry church inventories in the Groningen area. Bulletin of Earthquake Engineering, 17(8), 4625–4650. https://doi.org/10.1007/s10518-019-00575-7 Proestos, G. T., Bentz, E. C., & Collins, M. P. (2019). Reinforced Concrete Containment Walls Subjected to Combined In-Plane and Out-of-Plane Shear Stresses: Experimental Investigation and Sectional Analysis. Transactions, SMiRT-25: 25th Conference on Structural Mechanics in Reactor Technology. Presented at the 25th Conference on Structural Mechanics in Reactor Technology, Charlotte, North Carolina, USA. Bruun, E. P. G., Kuan, A., Proestos, G. T., Bentz, E. C., & Collins, M. P. (2018). Advanced nonlinear finite element modelling of reinforced concrete bridge piers. Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges - Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2018, 1231–1238. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85067006371&partnerID=MN8TOARS Moratti, M., Gaia, F., Martini, S., Tomasi, A., Casotto, C., Tsioli, C., … Proestos, G. T. (2018). Seismic Assessment of Unreinforced Masonry Houses in the Groningen Area. 16th European Conference on Earthquake Engineering. Presented at the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece. Moratti, M., Gaia, F., Martini, S., Tomasi, A., Casotto, C., Tsioli, C., … al. (2018). Seismic Assessment of Unreinforced Masonry Houses in the Groningen Area. 16th European Conference on Earthquake Engineering. Moratti, M., Gaia, F., Martini, S., Tsioli, C., Grecchi, G., Calvi, G. M., … Proestos, G. T. (2018). The Seismic Assessment of Unreinforced Masonry Church Inventories in the Groningen Area. 16th European Conference on Earthquake Engineering. Presented at the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece. Moratti, M., Gaia, F., Martini, S., Tsioli, C., Grecchi, G., Calvi, G. M., … Proestos, G. T. (2018). The Seismic Assessment of Unreinforced Masonry Church Inventories in the Groningen Area. 16th European Conference on Earthquake Engineering. Calvi, P. M., Proestos, G. T., & Ruggiero, D. M. (2018). Towards the development of direct crack-based assessment of structures. American Concrete Institute, ACI Special Publication, 2018-March(SP 328), 141–160. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85064955408&partnerID=MN8TOARS Proestos, G. T., Bentz, E. C., & Collins, M. P. (2018). ­Maximum Shear Capacity of Reinforced Concrete Members. ACI Structural Journal, 115(5), 1463–1473. https://doi.org/10.14359/51702252 Collins, M. P., Bentz, E. C., Kuan, A., & Proestos, G. T. (2017). Detailing for Torsion Revisited. Denis Mitchell Symposium. Presented at the Denis Mitchell Symposium, Montreal, Quebec, Canada. Proestos, G., Bae, G.-M., Cho, J.-Y., Bentz, E. C., & Collins, M. P. (2016). Influence of High-Strength Bars on Shear Response of Containment Walls. ACI Structural Journal, 113(5), 917–927. https://doi.org/10.14359/51688750 Collins, M. P., Bentz, E. C., Quach, P. T., & Proestos, G. T. (2016). Predicting the Shear Strength of Thick Slabs. fib International Workshop on Beam Shear, 269–282. Proestos, G. T., Bentz, E. C., & Collins, M. P. (2016). The design and analysis of reinforced concrete shell elements subjected to in-plane and out-of-plane shear stresses. Proceedings of the 11th fib International PhD Symposium in Civil Engineering, FIB 2016, 695–702. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84991738344&partnerID=MN8TOARS Collins, M. P., Bentz, E. C., Quach, P. T., Fisher, A. W., & Proestos, G. T. (2015). Predicting the Shear Strength of Concrete Structures. Proceedings, The New Zealand Concrete Industry Conference 2015. Presented at the New Zealand Concrete Industry Conference 2015, Rotorua, New Zealand. Proestos, G. T., Aghabeigi, H., & Calvi, P. M. (2015). Seismic assessment of the full scale four storey E-Defense rocking shear wall Shake Table Test. COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 3117–3126. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84942287992&partnerID=MN8TOARS Collins, M. P., Bentz, E. C., Quach, P. T., & Proestos, G. T. (2015). The Challenge of Predicting the Shear Strength of Very Thick Slabs: Results Support Recommendation to Use at Least Minimum Shear Reinforcement. Concrete International, 37(11), 29–37. Bae, G.-M., Proestos, G. T., Park, J.-H., Bentz, E. C., Cho, J.-Y., & Collins, M. P. (2014). Investigation of shear response of nuclear power plant wall elements using high strength materials. Engineering for Progress, Nature and People, 867–873. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84929448579&partnerID=MN8TOARS Bae, G.-M., Proestos, G. T., Lee, S.-C., Bentz, E. C., Collins, M. P., & Cho, J.-Y. (2013). In-Plane Shear Behavior of Nuclear Power Plant Wall Elements with High-Strength Reinforcing Bars. Transactions, SMiRT-22: 22nd Conference on Structural Mechanics in Reactor Technology. Presented at the 22nd Conference on Structural Mechanics in Reactor Technology, San Francisco, California, USA.