Kerry Havner Havner, K. S. (2020). Analytical solutions for material line and plane in triple slip, with inverse solutions for the slips from a finite deformation experiment on iron crystals. INTERNATIONAL JOURNAL OF PLASTICITY, 125, 280–293. https://doi.org/10.1016/j.ijplas.2019.08.018 Havner, K. S., & Franciosi, P. (2018). Finite deformation analysis of slip-induced crystalline rotations during tensile and compressive tests on bcc iron crystals. PHILOSOPHICAL MAGAZINE, 98(31), 2797–2825. https://doi.org/10.1080/14786435.2018.1506177 Havner, K. S. (2014). On crystal shear, lattice rotation and constraint stress in (110) channel die compression: rate-independent and viscoplastic analyses and predictions compared. Philosophical Magazine, 94(17), 1924–1955. https://doi.org/10.1080/14786435.2014.899441 Havner, K. S. (2013). Comparative evaluation of a viscoplastic power-law and rate-independent crystal plasticity in channel die compression. Mechanics of Materials, 59, 126–141. https://doi.org/10.1016/j.mechmat.2012.09.004 Havner, K. S. (2012). The elastoplastic transition in channel die compression of fcc crystals. International Journal of Plasticity, 35, 31–43. https://doi.org/10.1016/j.ijplas.2012.02.002 Havner, K. S. (2011). Perspectives on (110) channel die compression and analysis of the Goss orientation. International Journal of Plasticity, 27(10), 1512–1526. https://doi.org/10.1016/j.ijplas.2010.08.007 Havner, K. S. (2010). Analysis of fcc crystals in two singular orientations in (110) channel die compression. Mechanics of Materials, 42(6), 657–672. https://doi.org/10.1016/j.mechmat.2010.04.003 Havner, K. S. (2008). Finite plastic deformation of crystalline solids (paperback re-issue). Cambridge: Cambridge University Press. Havner, K. S. (2008). Further investigation of crystal hardening inequalities in (110) channel die compression. Philosophical Transactions of the Royal Society of London. Series A, Mathematical, Physical and Engineering Sciences, 464(2096), 1955–1982. https://doi.org/10.1098/rspa.2007.0272 Havner, K. S. (2008). Investigation of basic crystal hardening inequalities in a range of stable lattice orientations in (110) channel die compression. International Journal of Plasticity, 24(1), 74–88. https://doi.org/10.1016/j.ijplas.2007.02.002 Havner, K. S. (2007). Channel die compression revisited: Application of a set of basic crystal hardening inequalities to (110) loading. Mechanics of Materials, 39(6), 610–622. https://doi.org/10.1016/j.mechmat.2006.09.004 Havner, K. S. (2007). Corrigendum to Channel die compression revisited: Application of a set of basic crystal hardening inequalities to (110) loading (vol 39, pg 610, 2007). Mechanics of Materials, Vol. 39, pp. 893–895. https://doi.org/10.1016/j.mechmat.2007.03.001 Havner, K. S., & Yu, P.-G. (2005). Kinematic, stress, and hardening analysis in finite double slip. International Journal of Plasticity, 21(1), 83–99. https://doi.org/10.1016/j.ijplas.2004.04.008 Havner, K. S. (2005). On lattice and material-frame rotations and crystal hardening in high-symmetry axial loading. Philosophical Magazine, 85(25), 2861–2894. https://doi.org/10.1080/14786430500154315 Havner, K. S. (2004). On the onset of necking in the tensile test. International Journal of Plasticity, 20(05-Apr), 965–978. https://doi.org/10.1016/j.ijplas.2003.05.004 Yu, P. G., & Havner, K. S. (2000). Numerical studies of nonuniform deformation, stress state evolution, and subgrain formation in bicrystals in (110) channel die compression. Journal of the Mechanics and Physics of Solids, 49(1), 173–208. https://doi.org/10.1016/s0022-5096(00)00021-1 Havner, K. S., & Yu, P.-G. (1998). On the stress state at the yield point in symmetric bicrystals in (110) channel die compression. Mechanics of Materials, 27(4), 211–227. https://doi.org/10.1016/S0167-6636(97)00049-5 Havner, K. S. (1998). On velocity discontinuities in elastoplastic bicrystals in channel die compression. International Journal of Plasticity, 14(1-3), 61–74. https://doi.org/10.1016/S0749-6419(97)00040-5 Wu, S. C., & Havner, K. S. (1997). Analytical and numerical investigation of non-uniform straining and subgrain initiation in bicrystals in channel die compression. Philosophical Transactions of the Royal Society of London. Series A, Mathematical, Physical and Engineering Sciences, 355(1730), 1905–1943. https://doi.org/10.1098/rsta.1997.0095 Lin, G., & Havner, K. S. (1996). A comparative study of hardening theories in torsion using the Taylor polycrystal model. International Journal of Plasticity, 12, 695–718. https://doi.org/10.1016/S0749-6419(96)00025-3 Havner, K. S., & Wu, S.-C. (1995). An analytical investigation of inhomogeneous straining, subgrain formation, and the initiation of microshear bands in bicrystals. In D. F. Parker & A. H. England (Eds.), IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics: Proceedings of the IUTAM-ISIMM symposium held in Nottingham, U.K., 30 August-3 September 1994 (pp. 211–216). Dordrecht; Boston: Kluwer Academic. Wu, S.-C., & Havner, K. S. (1995). Exact stress states and velocity fields in bicrystals at the yield point in channel die compression. Zeitschrift Fur Angewandte Mathematik Und Physik, 46, 446–465. Havner, K. S. (1994). A statical interpretation of the stress work-conjugate to Lagrangian-based Almansi strain. In L. C. B. G. Z. Voyiadjis & L. J. Jacobs (Eds.), Mechanics of materials and structures (Studies in applied mechanics, 35) (pp. 241–252). https://doi.org/10.1016/b978-0-444-89918-7.50019-8 Havner, K. S., Wu, S.-C., & Fuh, S. (1994). On symmetric bicrystals at the yield point in (110) channel die compression. Journal of the Mechanics and Physics of Solids, 42, 361–379. https://doi.org/10.1016/0022-5096(94)90014-0 Lin, G., & Havner, K. S. (1994). On the evolution of texture and yield loci in axisymmetric deformation of f.c.c. polycrystals. International Journal of Plasticity, 10, 471–498. https://doi.org/10.1016/0749-6419(94)90010-8 Havner, K. S. (1993). G.I. Taylor revisited: The cone of unextended directions in double slip. International Journal of Plasticity, 9, 159–179. https://doi.org/10.1016/0749-6419(93)90027-N Al-Gadhib, A. H., & Havner, K. S. (1992). Comparative evaluation of plasticity theories against tension- torsion test at finite strain. Journal of Engineering Mechanics, 118, 2104–2126. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2104) Havner, K. S. (1992). Finite plastic deformation of crystalline solids. Cambridge: Cambridge University Press. Khedro, T., & Havner, K. S. (1991). Investigation of a one-parameter family of hardening rules in single slip in f.c.c. crystals. International Journal of Plasticity, 7, 477–503. https://doi.org/10.1016/0749-6419(91)90041-V Al-Gadhib, A. H., & Havner, K. S. (1990). Principal direction paths in tension-torsion test at finite strain. Journal of Engineering Mechanics, 116, 1002–1019. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1002) Fuh, S., & Havner, K. S. (1989). The theory of minimum plastic spin in crystal mechanics. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 422, 193–239. https://doi.org/10.1098/rspa.1989.0025 Chidambarrao, D., & Havner, K. S. (1988). Finite deformation analysis of f.c.c. crystals in (110)(112)(111) channel die compression. International Journal of Plasticity, 4, 1–27. https://doi.org/10.1016/0749-6419(88)90002-2 Chidambarrao, D., & Havner, K. S. (1988). On finite deformation of f.c.c. crystals in (110) channel die compression. Journal of the Mechanics and Physics of Solids, 36, 285–315. https://doi.org/10.1016/0022-5096(88)90013-0 Havner, K. S., & Chidambarrao, D. (1987). Analysis of a family of unstable lattice orientations in (110) channel die compression. Acta Mechanica, 69, 243–269. https://doi.org/10.1007/BF01175724 Havner, K. S. (1987). On the continuum mechanics of crystal slip. Continuum models of discrete systems: Proceedings of the Fifth International Symposium on Continuum Models of Discrete Systems, Nottingham, 14-20 July, 1985, 47–59. Rotterdam; Boston: A.A. Balkema. Havner, K. S. (1986). Fundamental considerations in micromechanical modeling of polycrystalline metals at finite strain. In J. Z. J. Gittus & S. Nemat-Nasser (Eds.), Large deformations of solids: Physical basis and mathematical modelling (pp. 243–265). https://doi.org/10.1007/978-94-009-3407-8_15 Fuh, S., & Havner, K. S. (1986). On uniqueness of multiple-slip solutions in constrained and unconstrained f.c.c. crystal deformation problems. International Journal of Plasticity, 2, 329–345. https://doi.org/10.1016/0749-6419(86)90021-5 Le, N. T., & Havner, K. S. (1985). Analysis of tensile loaded f.c.c. crystals in 4- and 8-fold symmetry. Mechanics of Materials, 4, 33–50. https://doi.org/10.1016/0167-6636(85)90005-5 Havner, K. S. (1985). Comparisons of crystal hardening laws in multiple slip. International Journal of Plasticity, 1, 111–124. https://doi.org/10.1016/0749-6419(85)90023-3 Havner, K. S., & Sue, P. L. (1985). Theoretical analysis of the channel die compression test. II. First- and second-order analysis of orientation in f.c.c. crystals. Journal of the Mechanics and Physics of Solids, 33, 285–313. https://doi.org/10.1016/0022-5096(85)90016-X Havner, K. S. (1984). First and second-order analysis of axially loaded crystals in n-fold symmetry. Philosophical Transactions of the Royal Society of London. Series A, Mathematical, Physical and Engineering Sciences, 311, 469–493. https://doi.org/10.1098/rsta.1984.0039 Sue, P. L., & Havner, K. S. (1984). Theoretical analysis of the channel die compression test: I. General considerations and finite deformation of f.c.c. crystals in stable lattice orientations. Journal of the Mechanics and Physics of Solids, 32, 417–442. https://doi.org/10.1016/0022-5096(84)90029-2 Havner, K. S., & Salpekar, S. A. (1983). Theoretical latent hardening of crystals in double slip: II. F.c.c. crystals slipping on distinct planes. Journal of the Mechanics and Physics of Solids, 31, 231–250. https://doi.org/10.1016/0022-5096(83)90024-8 Havner, K. S. (1982). A theory of finite plastic deformation of crystalline solids. In H. G. Hopkins & M. J. Sewell (Eds.), Mechanics of solids: The Rodney Hill 60th anniversary volume (pp. 265–302). https://doi.org/10.1016/b978-0-08-025443-2.50015-x Havner, K. S. (1982). Aspects of the simple theory of rotation-dependent crystal anisotropy. In E. H. Lee & R. L. Mallett (Eds.), Plasticity of metals at finite strain: Theory, experiment, and computation: Proceedings of research workshop held at Stanford University, July 29, 30, July 1, 1981 (pp. 318–340). Stanford, Cal.: Division of Applied Mechanics, Stanford University. Havner, K. S. (1982). Minimum plastic work selects the highest symmetry deformation in axially-loaded f.c.c. crystals. Mechanics of Materials, 1, 97–111. https://doi.org/10.1016/0167-6636(82)90038-2 Hill, R., & Havner, K. S. (1982). Perspectives in the mechanics of elastoplastic crystals. Journal of the Mechanics and Physics of Solids, 30, 5–22. https://doi.org/10.1016/0022-5096(82)90010-2 Havner, K. S., & Salpekar, S. A. (1982). Theoretical latent hardening of crystals in double slip: I. F.c.c. crystals with a common slip plane. Journal of the Mechanics and Physics of Solids, 30, 379–398. https://doi.org/10.1016/0022-5096(82)90024-2 Havner, K. S. (1981). A theoretical analysis of finitely deforming f.c.c. crystals in the sixfold symmetry position. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 378, 329–349. https://doi.org/10.1098/rspa.1981.0155 Havner, K. S. (1979). The kinematics of double slip with application to cubic crystals in the compression test. Journal of the Mechanics and Physics of Solids, 27, 415–429. https://doi.org/10.1016/0022-5096(79)90023-1 Havner, K. S., Baker, G. S., & Vause, R. F. (1979). Theoretical latent hardening in crystals: I. General equations for tension and compression with application to f.c.c. crystals in tension. Journal of the Mechanics and Physics of Solids, 27, 33–50. https://doi.org/10.1016/0022-5096(79)90009-7 Havner, K. S., & Baker, G. S. (1979). Theoretical latent hardening in crystals: II. B.c.c. crystals in tension and compression. Journal of the Mechanics and Physics of Solids, 27, 285–314. https://doi.org/10.1016/0022-5096(79)90031-0 Vause, R. F., & Havner, K. S. (1979). Theoretical latent hardening in crystals: III. F.c.c. crystals in compression. Journal of the Mechanics and Physics of Solids, 27, 393–414. https://doi.org/10.1016/0022-5096(79)90022-X Shalaby, A. H., & Havner, K. S. (1978). A general kinematical analysis of double slip. Journal of the Mechanics and Physics of Solids, 26, 79–92. https://doi.org/10.1016/0022-5096(78)90015-7 Havner, K. S., & Shalaby, A. H. (1978). Further investigation of a new hardening law in crystal plasticity. Journal of Applied Mechanics: Transactions of the ASME, 45, 500–506. https://doi.org/10.1115/1.3424352 Havner, K. S. (1978). On unifying concepts in plasticity theory and related matters in numerical analysis. Nuclear Engineering and Design, 46, 187–201. https://doi.org/10.1016/0029-5493(78)90183-8 Havner, K. S., & Shalaby, A. H. (1977). A simple mathematical theory of finite distortional latent hardening in single crystals. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 358, 47–70. https://doi.org/10.1098/rspa.1977.0186 Havner, K. S., & Singh, C. (1977). Application of a discrete polycrystal model to the analysis of cyclic straining in copper. International Journal of Solids and Structures, 13, 395–407. https://doi.org/10.1016/0020-7683(77)90035-x Havner, K. S. (1977). On unification, uniqueness and numerical analysis in plasticity. International Journal of Solids and Structures, 13, 625–635. https://doi.org/10.1016/0020-7683(77)90045-2 Havner, K. S. (1977). On uniqueness criteria and minimum principles for crystalline solids at finite strain. Acta Mechanica, 28, 139–151. https://doi.org/10.1007/BF01208794 Havner, K. S., & Patel, H. P. (1976). On convergence of the finite element method for a class of elastic-plastic solids. Quarterly of Applied Mathematics, 34, 59–68. https://doi.org/10.1090/qam/449142 Havner, K. S. (1975). Some concepts and results from the mechanics of crystalline solids having possible application to theories of thermoviscoplasticity. Workshop on Applied Thermoviscoplasticity held October 13 and 14, 1975 at the Technological Institute, Northwestern University, Evanston, Illinois, 19–35. Evanston, IL: Technological Institute, Northwestern University. Havner, K. S. (1974). Aspects of theoretical plasticity at finite deformation and large pressure. Zeitschrift Fur Angewandte Mathematik Und Physik, 25, 765–781. https://doi.org/10.1007/bf01590262 Havner, K. S. (1974). On bending of a crystal to a cylindrical surface. Journal of Applied Mechanics: Transactions of the ASME, 41, 1984–1988. Havner, K. S., Singh, C., & Varadarajan, R. (1974). Plastic deformation and latent strain energy in a polycrystalline aluminum model. International Journal of Solids and Structures, 10, 853–862. https://doi.org/10.1016/0020-7683(74)90028-6 Havner, K. S., & Varadarajan, R. (1973). A quantitative study of a crystalline aggregate model. International Journal of Solids and Structures, 9, 379–394. https://doi.org/10.1016/0020-7683(73)90087-5 Havner, K. S. (1973). An analytical model of large deformation effects in crystalline aggregates. In Foundations of plasticity (pp. 93–106). Leyden: Noordhof International. Havner, K. S. (1973). On the mechanics of crystalline solids. Journal of the Mechanics and Physics of Solids, 21, 383–384. https://doi.org/10.1016/0022-5096(73)90007-0 Havner, K. S. (1972). On Hill's stress rate in the continuum mechanics of polycrystals. Acta Mechanica, 14, 183–187. https://doi.org/10.1007/bf01184857 Havner, K. S. (1971). A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity. International Journal of Solids and Structures, 7, 719–730. https://doi.org/10.1016/0020-7683(71)90089-8 Havner, K. S. (1971). On convergence of a discrete aggregate model in polycrystalline plasticity. International Journal of Solids and Structures, 7, 1269–1275. https://doi.org/10.1016/0020-7683(71)90067-9 Havner, K. S. (1969). A discretized variational formulation of anisotropic small strain plasticity problems. Nuclear Engineering and Design, 11, 308–322. https://doi.org/10.1016/0029-5493(70)90154-8 Havner, K. S. (1969). A path criterion for deformation plasticity theory. Journal of the Engineering Mechanics Division, 95, 747–761. Havner, K. S. (1969). Mathematical theories of material behavior. In Metal fatigue: Theory and design (pp. 14–65). New York: Wiley. Havner, K. S. (1969). The theoretical behavior of a polycrystalline solid as related to certain general concepts of continuum plasticity. International Journal of Solids and Structures, 5, 215–226. https://doi.org/10.1016/0020-7683(69)90059-6 Havner, K. S. (1968). On convergence of iterative methods in plastic strain analysis. International Journal of Solids and Structures, 4, 491–508. https://doi.org/10.1016/0020-7683(68)90061-9 Havner, K. S., & Stanton, E. L. (1967). On energy-derived difference equations in thermal stress problems. Journal of the Franklin Institute, 284, 127–143. https://doi.org/10.1016/0016-0032(67)90585-6 Havner, K. S., & Glassco, J. B. (1966). On energy balance criteria in ductile fracture. International Journal of Fracture Mechanics, 2, 506–525. Havner, K. S. (1966). On the formulation and iterative solution of small strain plasticity problems. Quarterly of Applied Mathematics, 23, 323–335. https://doi.org/10.1090/qam/99938 Havner, K. S. (1965). Finite difference solution of two variable thermal and mechanical deformation problems. Journal of Spacecraft and Rockets, 2, 542–549. https://doi.org/10.2514/3.28226 Havner, K. S. (1963). Influence coefficients for circular plates. In Research Publication (Oklahoma State University. School of Civil Engineering) (Vol. 15). Stillwater, OK: Oklahoma State University, School of Civil Engineering. Stillwater, OK: Oklahoma State University, Engineering Experiment Station. (1961). Analysis of flat plates by the algebraic carry-over method, Vol. II - Tables. In Publication (Oklahoma State University. Engineering Experiment Station) (Vol. 119). Stillwater, OK: Oklahoma State University, Engineering Experiment Station. (1960). Analysis of flat plates by the algebraic carry-over method, Vol. I - Theory. In Publication (Oklahoma State University. Engineering Experiment Station) (Vol. 118). Tuma, J. J., & Havner, K. S. (1959). Analysis of continuous beams on elastic supports by carry-over moments. In Research Publication (Oklahoma State University. School of Civil Engineering) (Vol. 7). Stillwater, OK: Oklahoma State University, School of Civil Engineering. Havner, K. S., & Tuma, J. J. (1959). Influence lines for continuous beams. In Publication (Oklahoma State University. Engineering Experiment Station) (Vol. 106). Stillwater, OK: Oklahoma State University, Engineering Experiment Station. Tuma, J. J., Havner, K. S., & Hedges, F. (1958). Analysis of frames with curved and bent members. Proceedings of the American Society of Civil Engineers, Structural Division, 84(ST 5).