@article{priyadarshi_saunders_kriplani_demircioglu_davis_franzon_steer_2012, title={Parallel Transient Simulation of Multiphysics Circuits Using Delay-Based Partitioning}, volume={31}, ISSN={["1937-4151"]}, DOI={10.1109/tcad.2012.2201156}, abstractNote={A parallel transient simulation technique for multiphysics circuits is presented. The technique develops partitions utilizing the inherent delay present within a circuit and between physical domains. A state-variable-based circuit delay element is presented, which implements the coupling between two spatially or temporally isolated circuit partitions. A parallel delay-based iterative approach for interfacing delay-partitioned subcircuits is applied, which achieves the reasonable accuracy of nonparallel circuit simulation if both incorporate the same interblock delay. The partitioned subcircuits are distributed to different cores of a shared-memory multicore processor and solved in parallel. A multithreaded implementation of the methodology using OpenMP is presented. Examples showing superlinear speedup compared to unpartitioned single-core simulation using the direct method are presented. This paper also discusses the impact of load balancing and absolute delay on simulation speedup.}, number={10}, journal={IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS}, author={Priyadarshi, Shivam and Saunders, Christopher S. and Kriplani, Nikhil M. and Demircioglu, Harun and Davis, W. Rhett and Franzon, Paul D. and Steer, Michael B.}, year={2012}, month={Oct}, pages={1522–1535} }