Works (2)

Updated: July 7th, 2023 21:16

2017 journal article

The robust EM-type algorithms for log-concave mixtures of regression models

COMPUTATIONAL STATISTICS & DATA ANALYSIS, 111, 14–26.

By: H. Hu n, W. Yao* & Y. Wu n

author keywords: EM algorithm; Log-concave Maximum Likelihood Estimator; Mixture of regression model; Robust regression
TL;DR: A new method is proposed to estimate the mixture regression parameters by only assuming that the components have log-concave error densities but the specific parametric family is unknown, which has comparable performance to the normal EM algorithm. (via Semantic Scholar)
UN Sustainable Development Goal Categories
Source: Web Of Science
Added: August 6, 2018

2016 journal article

Maximum likelihood estimation of the mixture of log-concave densities

COMPUTATIONAL STATISTICS & DATA ANALYSIS, 101, 137–147.

By: H. Hu n, Y. Wu n & W. Yao*

author keywords: Consistency; Log-concave maximum likelihood estimator (LCMLE); Mixture model
TL;DR: This paper considers a much more flexible mixture model, which assumes each component density to be log-concave, and shows that the LCMLE improves the clustering results while comparing with the traditional MLE for parametric mixture models. (via Semantic Scholar)
Source: Web Of Science
Added: August 6, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.