@inproceedings{agcayazi_mcknight_kausche_ghosh_bozkurt_2016, title={A finger touch force detection method for textile based capacitive tactile sensor arrays}, DOI={10.1109/icsens.2016.7808528}, abstractNote={The use of touch-based technology to interact with electronic devices pre-dates modern day multi-touch technology and even the personal computer. It has recently been growing in popularity in wearable computing devices especially in the form of textile based tactile sensor. These sensors often target the detection of not only touch but also force applied. A significant problem arises here in differentiating inputs from an intended finger touch and just a bend of the sensor or other objects touching the sensor. In this work, we present our initial efforts to differentiate between a finger and an insulated object touch event on a custom textile based tactile sensor we developed before. Our experiments show that the two cases could be differentiated using the capacitance change of the neighboring cross-over points.}, booktitle={2016 ieee sensors}, author={Agcayazi, T. and McKnight, M. and Kausche, H. and ghosh and Bozkurt, A.}, year={2016} } @inproceedings{mcknight_agcayazi_kausche_ghosh_bozkurt_2016, title={Sensing textile seam-line for wearable multimodal physiological monitoring}, DOI={10.1109/embc.2016.7590702}, abstractNote={This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.}, booktitle={2016 38th annual international conference of the ieee engineering in medicine and biology society (embc)}, author={McKnight, M. and Agcayazi, T. and Kausche, H. and ghosh and Bozkurt, A.}, year={2016}, pages={311–314} } @inproceedings{kapoor_mcknight_chatterjee_agcayazi_kausche_ghosh_bozkurt_2016, place={Orlando, FL, USA}, title={Soft, flexible 3D printed fibers for capacitive tactile sensing}, url={http://ieeexplore.ieee.org/document/7808918/}, DOI={10.1109/icsens.2016.7808918}, abstractNote={This study presents our latest efforts towards developing a force sensor array by weaving 3D printed functionalized polymer fibers. Silicone was used as the base polymer and carbon fillers were used to impart electrical conductivity. Two “H”-shaped fiber cross-sections oriented orthogonally acted as a parallel plate capacitor and were used for detecting normal forces. In this article, we present the fabrication method of the unique “H”-shaped fiber cross-section along with the investigation of the relation between applied force and measured capacitance. We also report the sensor response to variation in temperature. The sensing crossover was found to have a stable mechanical and electrical response in the force range of 0–6 N and the performance of this soft sensor was not significantly affected by temperature.}, booktitle={2016 ieee sensors}, author={Kapoor, A. and McKnight, M. and Chatterjee, K. and Agcayazi, T. and Kausche, H. and ghosh and Bozkurt, A.}, year={2016}, pages={1–3} }