@article{schrickx_kashani_buck_ding_rech_flagg_li_kudenov_you_richter_et al._2024, title={Exceptional Alignment in a Donor-Acceptor Conjugated Polymer via a Previously Unobserved Liquid Crystal Mesophase}, volume={4}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.202315183}, abstractNote={Abstract}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Schrickx, Harry M. and Kashani, Somayeh and Buck, Lauren and Ding, Kan and Rech, Jeromy J. and Flagg, Lucas Q. and Li, Ruipeng and Kudenov, Michael W. and You, Wei and Richter, Lee J. and et al.}, year={2024}, month={Apr} } @article{schrickx_gyurek_moore_hernandez-pagan_doherty_kudenov_brendan t. o'connor_2024, title={Flexible Self-Powered Organic Photodetector with High Detectivity for Continuous On-Plant Sensing}, volume={2}, ISSN={["2195-1071"]}, DOI={10.1002/adom.202400005}, abstractNote={Abstract}, journal={ADVANCED OPTICAL MATERIALS}, author={Schrickx, Harry M. and Gyurek, Sydney and Moore, Caleb and Hernandez-Pagan, Edmaritz and Doherty, Colleen J. and Kudenov, Michael W. and Brendan T. O'Connor}, year={2024}, month={Feb} } @article{al shafe_schrickx_ding_ade_brendan t. o'connor_2023, title={Rubber-Toughened Organic Solar Cells: Miscibility-Morphology-Performance Relations}, volume={8}, ISSN={["2380-8195"]}, DOI={10.1021/acsenergylett.3c01124}, abstractNote={Tough organic solar cell (OSC) active layers are necessary to achieve robust, flexible, and stretchable devices. A major challenge is that the brittle small molecule acceptor (SMA) in polymer/SMA bulk heterojunctions results in films prone to mechanical failure. To improve mechanical toughness, we investigate the use of a thermoplastic elastomer (styrene-b-ethylene-butylene-styrene) (SEBS) as an additive in high-performance photoactive layers. We find a consistent transition of all measured parameters [e.g., fracture energy (Gc) and power conversion efficiency (PCE)] at a SEBS concentration of 5–10 wt %, which is driven by the miscibility of the SEBS. We use this insight to optimize the SEBS loading for PCE and toughness. Optimized OSCs are found to increase Gc significantly with a marginal decrease in PCE, resulting in a record Gc·PCE metric, considering all OSC photoactive layers. The pronounced miscibility–function relationship provides a framework to optimize elastomer addition in OSCs for performance and toughness.}, journal={ACS ENERGY LETTERS}, author={Al Shafe, Abdullah and Schrickx, Harry M. and Ding, Kan and Ade, Harald and Brendan T. O'Connor}, year={2023}, month={Aug} } @article{altaqui_schrickx_gyurek_sen_escuti_brendan t. o'connor_kudenov_2022, title={Cephalopod-inspired snapshot multispectral sensor based on geometric phase lens and stacked organic photodetectors}, volume={61}, ISSN={["1560-2303"]}, DOI={10.1117/1.OE.61.7.077104}, abstractNote={Abstract. Multispectral imaging (MSI) is a valuable sensing modality for applications that require detecting a scene’s chemical characteristics. Existing MSI techniques utilize a filter wheel or color filter arrays, which are subject to reduced temporal or spatial resolution. In this work, we present a cephalopod-inspired multispectral organic sensor (CiMOS) based on geometric phase lenses (GPLs) and organic photovoltaics (OPVs) to enable aberration-based color sensing. We mimic the approach by which animals with single-type photoreceptors perceive colors via chromatic aberration. The intrinsic chromatic aberration of GPLs allows for multispectral sensing by stacking precisely patterned OPVs within specific spectrally dependent focal lengths. We provide simulations and a proof of concept of the CiMOS and highlight its advantages, including its simple design and snapshot multi-color detection using only a single axial position. Experimental results demonstrate the sensor’s ability to detect four colors with full width at half maximum spectral resolution as low as 35 nm.}, number={7}, journal={OPTICAL ENGINEERING}, author={Altaqui, Ali and Schrickx, Harry and Gyurek, Sydney and Sen, Pratik and Escuti, Michael and Brendan T. O'Connor and Kudenov, Michael}, year={2022}, month={Jul} } @article{booth_khanna_schrickx_siddika_al shafe_brendan t. o'connor_2022, title={Electrothermally Actuated Semitransparent Shape Memory Polymer Composite with Application as a Wearable Touch Sensor}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.2c10290}, abstractNote={A semitransparent shape memory polymer (SMP):silver nanowire (AgNW) composite is demonstrated to be capable of low-temperature actuation, thus making it attractive for wearable electronics applications that require intimate contact with the human body. We demonstrate that the SMP:AgNW composite has tunable electrical and optical transparency through variation of the AgNW loading and that the AgNW loading did not significantly change the mechanical behavior of the SMP. The SMP composite is also capable of electrical actuation through Joule heating, where applying a 4 V bias across the AgNWs resulted in full shape recovery. The SMP was found to have high strain sensitivity at both small (<1%) and large (over 10%) applied strain. The SMP could sense strains as low as 0.6% with a gauge factor of 8.2. The SMP composite was then utilized as a touch sensor, able to sense and differentiate tapping and pressing. Finally, the composite was applied as a wearable ring that was thermally actuated to conformably fit onto a finger as a touch sensor. The ring sensor was able to sense finger tapping, pressing, and bending with high signal-to-noise ratios. These results demonstrate that SMP:AgNW composites are a promising design approach for application in wearable electronics.}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Booth, Ronald E. and Khanna, Chetna and Schrickx, Harry M. and Siddika, Salma and Al Shafe, Abdullah and Brendan T. O'Connor}, year={2022}, month={Nov} } @article{booth_schrickx_hanby_liu_qin_ade_zhu_brendan t. o'connor_2022, title={Silver Nanowire Composite Electrode Enabling Highly Flexible, Robust Organic Photovoltaics}, volume={6}, ISSN={["2367-198X"]}, DOI={10.1002/solr.202200264}, abstractNote={Using Ag nanowires (NWs) is a promising approach to make flexible and transparent conducting electrodes for organic photovoltaics (OPVs). However, the roughness of the NWs can decrease device performance. Herein, a Ag NW electrode embedded in a UV‐curable epoxy that uses a simple mechanical lift‐off process resulting in highly planar electrodes is demonstrated. A bimodal blend of Ag NWs with varying aspect ratios is used to optimize the transparency and conductivity of the electrode. In addition, a ZnO layer is coated on the Ag NWs prior to the embedding process to ensure low contact resistance in the OPV cells. The resulting resin‐embedded ZnO‐encapsulated silver nanowire (REZEN) electrode is found to have excellent mechanical stability. REZEN electrode‐based OPV cells exhibit comparable performance with reference devices, achieving maximum power conversion efficiency (PCE) of 13.5% and 13.6% respectively. The REZEN‐based OPV cells are also mechanically robust, retaining 97% of their PCE after 5000 cycles at R = 1.2 mm and 94% PCE after 1000 cycles at R = 0.55 mm. This flexibility is among the highest reported for freestanding devices. Thus, the REZEN electrode is a promising and simple strategy to achieve mechanically robust ITO‐free flexible OPV cells.}, journal={SOLAR RRL}, author={Booth, Ronald E. and Schrickx, Harry M. and Hanby, Georgia and Liu, Yuxuan and Qin, Yunpeng and Ade, Harald and Zhu, Yong and Brendan T. O'Connor}, year={2022}, month={Jun} } @article{altaqui_schrickx_sen_li_rech_lee_balar_you_kim_escuti_et al._2021, title={Bio-inspired spectropolarimetric sensor based on tandem organic photodetectors and multi-twist liquid crystals}, volume={29}, ISSN={["1094-4087"]}, url={https://doi.org/10.1364/OE.431858}, DOI={10.1364/OE.431858}, abstractNote={Simultaneous spectral and polarimetric imaging enables versatile detection and multimodal characterization of targets of interest. Current architectures incorporate a 2×2 pixel arrangement to acquire the full linear polarimetric information causing spatial sampling artifacts. Additionally, they suffer from limited spectral selectivity and high color crosstalk. Here, we demonstrate a bio-inspired spectral and polarization sensor structure based on integrating semitransparent polarization-sensitive organic photovoltaics (P-OPVs) and liquid crystal polymer (LCP) retarders in a tandem configuration. Color tuning is realized by leveraging the dynamic chromatic retardation control of LCP films, while polarization sensitivity is realized by exploiting the flexible anisotropic properties of P-OPVs. The structure is marked by its ultra-thin design and its ability to detect spectral and polarimetric contents along the same optical axis, thereby overcoming the inherent limitations associated with conventional division-of-focal plane sensors.}, number={26}, journal={OPTICS EXPRESS}, publisher={The Optical Society}, author={Altaqui, Ali and Schrickx, Harry and Sen, Pratik and Li, Lingshan and Rech, Jeromy and Lee, Jin-Woo and Balar, Nrup and You, Wei and Kim, Bumjoon J. and Escuti, Michael and et al.}, year={2021}, month={Dec}, pages={43953–43969} } @article{altaqui_sen_schrickx_rech_lee_escuti_you_kim_kolbas_brendan t. o'connor_et al._2021, title={Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging}, volume={7}, ISSN={["2375-2548"]}, url={https://doi.org/10.1126/sciadv.abe3196}, DOI={10.1126/sciadv.abe3196}, abstractNote={Semitransparent polarization-sensitive organic detectors reveal unprecedented degrees of freedom for multidimensional imaging.}, number={10}, journal={SCIENCE ADVANCES}, publisher={American Association for the Advancement of Science (AAAS)}, author={Altaqui, Ali and Sen, Pratik and Schrickx, Harry and Rech, Jeromy and Lee, Jin-Woo and Escuti, Michael and You, Wei and Kim, Bumjoon J. and Kolbas, Robert and Brendan T. O'Connor and et al.}, year={2021}, month={Mar} } @article{balar_rech_siddika_song_schrickx_sheikh_ye_bonilla_awartani_ade_et al._2021, title={Resolving the Molecular Origin of Mechanical Relaxations in Donor-Acceptor Polymer Semiconductors}, volume={32}, ISSN={["1616-3028"]}, url={https://doi.org/10.1002/adfm.202105597}, DOI={10.1002/adfm.202105597}, abstractNote={Abstract}, number={4}, journal={ADVANCED FUNCTIONAL MATERIALS}, publisher={Wiley}, author={Balar, Nrup and Rech, Jeromy James and Siddika, Salma and Song, Runqiao and Schrickx, Harry M. and Sheikh, Nadeem and Ye, Long and Bonilla, Anthony Megret and Awartani, Omar and Ade, Harald and et al.}, year={2021}, month={Oct} } @article{schrickx_sen_booth_altaqui_burleson_rech_lee_biliroglu_gundogdu_kim_et al._2021, title={Ultra-High Alignment of Polymer Semiconductor Blends Enabling Photodetectors with Exceptional Polarization Sensitivity}, volume={10}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.202105820}, abstractNote={Abstract}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Schrickx, Harry M. and Sen, Pratik and Booth, Ronald E. and Altaqui, Ali and Burleson, Jacob and Rech, Jeromy J. and Lee, Jin-Woo and Biliroglu, Melike and Gundogdu, Kenan and Kim, Bumjoon J. and et al.}, year={2021}, month={Oct} }