@article{forfora_azuaje_kanipe_gonzalez_lendewig_urdaneta_venditti_gonzalez_argyropoulos_2024, title={Are starch-based materials more eco-friendly than fossil-based? A critical assessment}, volume={13}, ISSN={["2666-7894"]}, DOI={10.1016/j.cesys.2024.100177}, abstractNote={This review conducts a comprehensive quantitative analysis of the life cycle assessments (LCA) of starch-based products from production inception (biomass and starch production) to final manufacture. More specifically, this analysis synthesizes published LCA data for starch-based films, foams, polylactic acid (PLA), and filaments against typical fossil-based counterparts (polyethylene and polystyrene), revealing PLA's carbon emissions range from 0.62 to 5.3 kg CO2eq/kg, films at 3.2–5.8 kg CO2eq/kg, and foams at 1.3–3.2 kg CO2eq/kg, contrasted with fossil-based products emitting 0.7–6.7 kg CO2eq/kg. Despite lower carbon dioxide emissions for starch-based products, the broader environmental impact, including eutrophication and acidification, often exceeds that of fossil-based counterparts, attributed to agricultural inputs such as fertilizers and pesticides. This review delineates the environmental merits of starch-based products, outlines their optimal applications, and underscores the imperative for future research to address identified knowledge gaps and methodological limitations, particularly in the comprehensive environmental assessment of agricultural inputs and their mitigation strategies.}, journal={CLEANER ENVIRONMENTAL SYSTEMS}, author={Forfora, Naycari and Azuaje, Ivana and Kanipe, Taylor and Gonzalez, Jose A. and Lendewig, Mariana and Urdaneta, Isabel and Venditti, Richard and Gonzalez, Ronalds and Argyropoulos, Dimitris}, year={2024}, month={Jun} } @article{vivas_pifano_vera_urdaneta_urdaneta_forfora_abatti_phillips_dasmohapatra_saloni_et al._2024, title={Understanding the potential of bamboo fibers in the USA: A comprehensive techno-economic comparison of bamboo fiber production through mechanical and chemical processes}, volume={6}, ISSN={["1932-1031"]}, url={https://doi.org/10.1002/bbb.2652}, DOI={10.1002/bbb.2652}, abstractNote={Abstract The growing interest in bamboo fibers for pulp, paper, and board production in the USA necessitates a comprehensive financial viability assessment. This study conducts a detailed technoeconomic analysis (TEA) of bamboo fiber production, primarily for the consumer hygiene tissue market although it is also applicable to other industrial uses. The economic viability of two pulping methods – alkaline peroxide mechanical pulping (APMP) and ammonium bisulfite chemical pulping (ABS) – was explored within three different pulp mill settings to supply pulp to two nonintegrated tissue and towel mills in South Carolina, USA. The target was to produce wet lap bamboo bleached pulp at 50% consistency and 70% ISO brightness. Despite higher initial capital invesment and operating costs, ABS achieved a lower minimum required selling price – USD 544 to 686 per bone dry metric ton (BDt = 1000 BDkg) – in comparison with USD 766 to 899 BDt −1 for APMP. This price advantage is partly due to an additional revenue stream (lignosulfonate byproduct), which not only boosts revenue but also circumvents the need for expensive chemical recovery systems. When compared with traditional kraft pulping, both methods require significantly lower capital investments, with minimum required selling prices (estimated to achieve 16% IRR) below current market rates for extensively used bleached kraft pulps in the USA tissue industry. The economic benefits derive from several factors: the low cost of bamboo as raw material, reduced capital needs for new pulping technologies, lower transportation costs from the pulp mill to tissue and towel manufacturing facilities, and the high market price of bleached kraft pulp.}, journal={BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR}, author={Vivas, Keren A. and Pifano, Alonzo and Vera, Ramon E. and Urdaneta, Fernando and Urdaneta, Isabel and Forfora, Naycari and Abatti, Camilla and Phillips, Richard B. and Dasmohapatra, Sudipta and Saloni, Daniel and et al.}, year={2024}, month={Jun} }