@article{dieck_wood_brglez_rojas-pierce_boss_2012, title={Increasing phosphatidylinositol (4,5) bisphosphate biosynthesis affects plant nuclear lipids and nuclear functions}, volume={57}, ISSN={["1873-2690"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84861821133&partnerID=MN8TOARS}, DOI={10.1016/j.plaphy.2012.05.011}, abstractNote={In order to characterize the effects of increasing phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2) on nuclear function, we expressed the human phosphatidylinositol (4)-phosphate 5-kinase (HsPIP5K) 1α in Nicotiana tabacum (NT) cells. The HsPIP5K-expressing (HK) cells had altered nuclear lipids and nuclear functions. HK cell nuclei had 2-fold increased PIP5K activity and increased steady state PtdIns(4,5)P2. HK nuclear lipid classes showed significant changes compared to NT (wild type) nuclear lipid classes including increased phosphatidylserine (PtdSer) and phosphatidylcholine (PtdCho) and decreased lysolipids. Lipids isolated from protoplast plasma membranes (PM) were also analyzed and compared with nuclear lipids. The lipid profiles revealed similarities and differences in the plasma membrane and nuclei from the NT and transgenic HK cell lines. A notable characteristic of nuclear lipids from both cell types is that PtdIns accounts for a higher mol% of total lipids compared to that of the protoplast PM lipids. The lipid molecular species composition of each lipid class was also analyzed for nuclei and protoplast PM samples. To determine whether expression of HsPIP5K1α affected plant nuclear functions, we compared DNA replication, histone 3 lysine 9 acetylation (H3K9ac) and phosphorylation of the retinoblastoma protein (pRb) in NT and HK cells. The HK cells had a measurable decrease in DNA replication, histone H3K9 acetylation and pRB phosphorylation.}, journal={PLANT PHYSIOLOGY AND BIOCHEMISTRY}, publisher={Elsevier BV}, author={Dieck, Catherine B. and Wood, Austin and Brglez, Irena and Rojas-Pierce, Marcela and Boss, Wendy F.}, year={2012}, month={Aug}, pages={32–44} } @article{im_perera_brglez_davis_stevenson-paulik_phillippy_johannes_allen_boss_2007, title={Increasing plasma membrane phosphatidylinositol(4,5)bisphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum}, volume={19}, ISSN={["1532-298X"]}, DOI={10.1105/tpc.107.051367}, abstractNote={AbstractA genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIα in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIα increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.}, number={5}, journal={PLANT CELL}, author={Im, Yang Ju and Perera, Imara Y. and Brglez, Irena and Davis, Amanda J. and Stevenson-Paulik, Jill and Phillippy, Brian Q. and Johannes, Eva and Allen, Nina S. and Boss, Wendy F.}, year={2007}, month={May}, pages={1603–1616} } @article{shank_su_brglez_boss_dewey_boston_2001, title={Induction of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants}, volume={126}, ISSN={["0032-0889"]}, DOI={10.1104/pp.126.1.267}, abstractNote={AbstractThe endoplasmic reticulum (ER) stress response is a signal transduction pathway activated by the perturbation of normal ER metabolism. We used the maize (Zea mays)floury-2 (fl2) mutant and soybean (Glycine max) suspension cultures treated with tunicamycin (Tm) to investigate the ER stress response as it relates to phospholipid metabolism in plants. Four key phospholipid biosynthetic enzymes, including DG kinase and phosphatidylinositol (PI) 4-phosphate 5-kinase were up-regulated in the fl2 mutant, specifically in protein body fractions where the mutation has its greatest effect. The third up-regulated enzyme, choline-phosphate cytidylyltransferase, was regulated by fl2 gene dosage and developmental signals. Elevated accumulation of the fourth enzyme, PI 4-kinase, was observed in the fl2 endosperm and soybean cells treated with Tm. The activation of these phospholipid biosynthetic enzymes was accompanied by alterations in membrane lipid synthesis and accumulation. The fl2 mutant exhibited increased PI content in protein body membranes at 18 d after pollination and more than 3-fold higher triacylglycerol accumulation in the endosperm by 36 d after pollination. Incorporation of radiolabeled acetate into phospholipids in soybean culture cells increased by about 30% with Tm treatment. The coordinated regulation of ER stress related proteins and multiple components of phospholipid biosynthesis is consistent with signaling through a common pathway. We postulate that the plant ER stress response has an important role in general plant metabolism, and more specifically in integrating the synthesis of protein and lipid reserves to allow proper seed formation.}, number={1}, journal={PLANT PHYSIOLOGY}, author={Shank, KJ and Su, P and Brglez, I and Boss, WF and Dewey, RE and Boston, RS}, year={2001}, month={May}, pages={267–277} }