@article{wiegmann_trautwein_winkler_barr_kim_lambkin_bertone_cassel_bayless_heimberg_et al._2011, title={Episodic radiations in the fly tree of life}, volume={108}, number={14}, journal={Proceedings of the National Academy of Sciences of the United States of America}, author={Wiegmann, B. M. and Trautwein, M. D. and Winkler, I. S. and Barr, N. B. and Kim, J. W. and Lambkin, C. and Bertone, M. A. and Cassel, B. K. and Bayless, K. M. and Heimberg, A. M. and et al.}, year={2011}, pages={5690–5695} } @article{daugeron_plant_winkler_stark_baylac_2011, title={Extreme male leg polymorphic asymmetry in a new empidine dance fly (Diptera: Empididae)}, volume={7}, number={1}, journal={Biology Letters}, author={Daugeron, C. and Plant, A. and Winkler, I. and Stark, A. and Baylac, M.}, year={2011}, pages={11–14} } @article{winkler_labandeira_wappler_wilf_2010, title={Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: New taxa from the paleogene of North America and Germany and their evolutionary implications}, volume={84}, number={5}, journal={Journal of Paleontology}, author={Winkler, I. S. and Labandeira, C. C. and Wappler, T. and Wilf, P.}, year={2010}, pages={935–954} } @article{winkler_rung_scheffer_2010, title={Hennig's orphans revisited: Testing morphological hypotheses in the "Opomyzoidea" (Diptera: Schizophora)}, volume={54}, number={3}, journal={Molecular Phylogenetics and Evolution}, author={Winkler, I. S. and Rung, A. and Scheffer, S. J.}, year={2010}, pages={746–762} } @article{winkler_scheffer_mitter_2009, title={Molecular phylogeny and systematics of leaf-mining flies (Diptera: Agromyzidae): delimitation of Phytomyza FallEn sensu lato and included species groups, with new insights on morphological and host-use evolution}, volume={34}, ISSN={["1365-3113"]}, DOI={10.1111/j.1365-3113.2008.00462.x}, abstractNote={Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyiasyn.n., Ptochomyzasyn.n., and Napomyzasyn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n., P. alopecuri (Griffiths) comb.n., P. arctagrostidis (Griffiths) comb.n., P. beigerae (Griffiths) comb.n., P. blackstoniae (Spencer) comb.n., P. centaurii (Spencer) comb.n., P. chamaemetabola (Griffiths) comb.n., P. cinnae (Griffiths) comb.n., P. compta (Spencer) comb.n., P. cygnicollina (Griffiths) comb.n., P. doolittlei (Spencer) comb.n., P. elgonensis (Spencer) comb.n., P. eriodictyi (Spencer) comb.n., P. flavida (Spencer) comb.n., P. fricki (Griffiths) comb.n., P. furcata (Griffiths) comb.n., P. griffithsiana (Beiger) comb.n., P. hoppiella (Spencer) comb.n., P. ixeridopsis (Griffiths) comb.n., P. kluanensis (Griffiths) comb.n., P. leptargyreae (Griffiths) comb.n., P. linnaeae (Griffiths) comb.n., P. luzulivora (Spencer) comb.n., P. mimuli (Spencer) comb.n., P. mitchelli (Spencer) comb.n., P. montella (Spencer) comb.n., P. nigrilineata (Griffiths) comb.n., P. nigrissima (Spencer) comb.n., P. orbitella (Spencer) comb.n., P. paraciliata (Godfray) comb.n., P. poae (Griffiths) comb.n., P. pseudomilii (Griffiths) comb.n., P. qinghaiensis (Gu) comb.n., P. rhaetica (Griffiths) comb.n., P. scabiosella (Beiger) comb.n., P. seneciophila (Spencer) comb.n., P. shepherdiana (Griffiths) comb.n., P. spenceriana (Griffiths) comb.n., P. styriaca (Griffiths) comb.n., P. subnigra (Spencer) comb.n., P. suikazurae (Sasakawa) comb.n., P. symphoricarpi (Griffiths) comb.n., P. syngenesiae (Hardy) comb.n., P. thermarum (Griffiths) comb.n., P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n., P. acutiventris (Zlobin) comb.n., P. angulata (Zlobin) comb.n., P. arcticola (Spencer) comb.n., P. bellidis (Griffiths) comb.n., P. carotae (Spencer) comb.n., P. cichorii (Spencer) comb.n., P. curvipes (Zlobin) comb.n., P. dubia (Zlobin) comb.n., P. filipenduliphila (Zlobin) comb.n., P. flavivertex (Zlobin) comb.n., P. flavohumeralis (Zlobin) comb.n., P. genualis (Zlobin) comb.n., P. grandella (Spencer) comb.n., P. humeralis (Zlobin) comb.n., P. immanis (Spencer) comb.n., P. immerita (Spencer) comb.n., P. inquilina (Kock) comb.n., P. kandybinae (Zlobin) comb.n., P. lacustris (Zlobin) comb.n., P. laterella (Zlobin) comb.n., P. manni (Spencer) comb.n., P. maritima (Tschirnhaus) comb.n., P. merita (Zlobin) comb.n., P. mimula (Spencer) comb.n., P. minuta (Spencer) comb.n., P. montanoides (Spencer) comb.n., P. neglecta (Zlobin) comb.n., P. nigriceps (van der Wulp) comb.n., P. nugax (Spencer) comb.n., P. pallens (Spencer) comb.n., P. paratripolii (Chen & Wang) comb.n., P. plumea (Spencer) comb.n., P. plumigera (Zlobin) comb.n., P. prima (Zlobin) comb.n., P. pubescens (Zlobin) comb.n., P. schusteri (Spencer) comb.n., P. scrophulariae (Spencer) comb.n., P. suda (Spencer) comb.n., P. tanaitica (Zlobin) comb.n., P. tenuifrons (Zlobin) comb.n., P. vivida (Spencer) comb.n., P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n.Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montanaSpencer, 1981; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.}, number={2}, journal={SYSTEMATIC ENTOMOLOGY}, author={Winkler, Isaac S. and Scheffer, Sonja J. and Mitter, Charles}, year={2009}, month={Apr}, pages={260–292} } @article{winkler_mitter_scheffer_2009, title={Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies}, volume={106}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.0904852106}, abstractNote={ A central but little-tested prediction of “escape and radiation” coevolution is that colonization of novel, chemically defended host plant clades accelerates insect herbivore diversification. That theory, in turn, exemplifies one side of a broader debate about the relative influence on clade dynamics of intrinsic (biotic) vs. extrinsic (physical-environmental) forces. Here, we use a fossil-calibrated molecular chronogram to compare the effects of a major biotic factor (repeated shift to a chemically divergent host plant clade) and a major abiotic factor (global climate change) on the macroevolutionary dynamics of a large Cenozoic radiation of phytophagous insects, the leaf-mining fly genus Phytomyza (Diptera: Agromyzidae). We find one of the first statistically supported examples of consistently elevated net diversification accompanying shift to new plant clades. In contrast, we detect no significant direct effect on diversification of major global climate events in the early and late Oligocene. The broader paleoclimatic context strongly suggests, however, that climate change has at times had a strong indirect influence through its effect on the biotic environment. Repeated rapid Miocene radiation of these flies on temperate herbaceous asterids closely corresponds to the dramatic, climate-driven expansion of seasonal, open habitats. }, number={43}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Winkler, Isaac S. and Mitter, Charles and Scheffer, Sonja J.}, year={2009}, month={Oct}, pages={18103–18108} }