@article{reed_naik_abney_herbert_fine_vadlamannati_morris_taylor_muglia_granlund_et al._2024, title={Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite}, volume={32}, ISSN={["1558-0865"]}, url={https://doi.org/10.1109/TCST.2024.3359891}, DOI={10.1109/TCST.2024.3359891}, abstractNote={In this work, we present an iterative learning strategy and experimental validation thereof for optimizing the flight trajectory of an underwater kite. The methodology is adapted to two different power generation configurations. The iterative learning algorithm consists of two main steps, which are executed at each iteration. In the first step, a meta-model is updated using a recursive least squares (RLS) estimate to capture an economic performance index as a function of a set of basis parameters that define the flight trajectory. The second step is an iterative learning update using information from past cycles to update basis parameters at future cycles using a gradient ascent formulation. This algorithm was experimentally validated on a scaled experimental prototype underwater kite system towed behind a test vessel in Lake Norman, North Carolina. Using our experimental system and algorithm, we were able to increase the kite’s mechanical power generation by an average of 24.4% across the tests performed.}, number={4}, journal={IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY}, author={Reed, James and Naik, Kartik and Abney, Andrew and Herbert, Dillon and Fine, Jacob and Vadlamannati, Ashwin and Morris, James and Taylor, Trip and Muglia, Michael and Granlund, Kenneth and et al.}, year={2024}, month={Jul}, pages={1240–1253} } @article{bogdanoff_shertzer_layman_chapman_fruitema_solomon_sabattis_green_morris_2021, title={Optimum lionfish yield: a non-traditional management concept for invasive lionfish (Pterois spp.) fisheries}, volume={23}, ISSN={["1573-1464"]}, DOI={10.1007/s10530-020-02398-z}, number={3}, journal={BIOLOGICAL INVASIONS}, author={Bogdanoff, Alex K. and Shertzer, Kyle W. and Layman, Craig A. and Chapman, Jennifer K. and Fruitema, Marc L. and Solomon, Jennifer and Sabattis, Julie and Green, Stephanie and Morris, James A., Jr.}, year={2021}, month={Mar}, pages={795–810} } @article{peake_bogdanoff_layman_castillo_reale-munroe_chapman_dahl_patterson_eddy_ellis_et al._2018, title={Feeding ecology of invasive lionfish (Pterois volitans and Pterois miles) in the temperate and tropical western Atlantic}, volume={20}, ISSN={["1573-1464"]}, DOI={10.1007/s10530-018-1720-5}, abstractNote={Numerous location-based diet studies have been published describing different aspects of invasive lionfish (Pterois volitans and Pterois miles) feeding ecology, but there has been no synthesis of their diet composition and feeding patterns across regional gradients. 8125 lionfish stomachs collected from 10 locations were analyzed to provide a generalized description of their feeding ecology at a regional scale and to compare their diet among locations. Our regional data indicate lionfish in the western Atlantic are opportunistic generalist carnivores that consume at least 167 vertebrate and invertebrate prey species across multiple trophic guilds, and carnivorous fish and shrimp prey that are not managed fishery species and not considered at risk of extinction by the International Union for Conservation of Nature disproportionately dominate their diet. Correlations between lionfish size and their diet composition indicate lionfish in the western Atlantic transition from a shrimp-dominated diet to a fish-dominated diet through ontogeny. Lionfish total length (TL) (mm) was found to predict mean prey mass per stomach (g) by the following equation mean prey mass =0.0002*TL1.6391, which can be used to estimate prey biomass consumption from lionfish length-frequency data. Our locational comparisons indicate lionfish diet varies considerably among locations, even at the group (e.g., crab) and trophic guild levels. The Modified Index of Relative Importance developed specifically for this study, calculated as the frequency of prey a × the number of prey a, can be used in other diet studies to assess prey importance when prey mass data are not available. Researchers and managers can use the diet data presented in this study to make inference about lionfish feeding ecology in areas where their diet has yet to be described. These data can be used to guide research and monitoring efforts, and can be used in modeling exercises to simulate the potential effects of lionfish on marine food webs. Given the large variability in lionfish diet composition among locations, this study highlights the importance of continued location-based diet assessments to better inform local management activities.}, number={9}, journal={BIOLOGICAL INVASIONS}, author={Peake, Jonathan and Bogdanoff, Alex K. and Layman, Craig A. and Castillo, Bernard and Reale-Munroe, Kynoch and Chapman, Jennifer and Dahl, Kristen and Patterson, William F., III and Eddy, Corey and Ellis, Robert D. and et al.}, year={2018}, month={Sep}, pages={2567–2597} }