@article{brito_suarez_pifano_reisinger_wright_saloni_kelley_gonzalez_venditti_jameel_2023, title={Environmental Life Cycle Assessment of Premium and Ultra Hygiene Tissue Products in the United States}, volume={18}, ISSN={["1930-2126"]}, DOI={10.15376/biores.18.2.4006-4031}, abstractNote={Under the controversial concern of using virgin fibers in hygiene tissue products, mostly Bleached Eucalyptus Kraft (BEK) and Northern Bleached Softwood Kraft (NBSK), consumers are responding by purchasing self-labeled sustainable products. As of today, there are no established sustainability reported results to inform consumers about the carbon footprint of hygiene tissue. To fill this gap, this study used Life Cycle Assessment to evaluate the environmental impacts across the supply chain (cradle to gate) to produce Premium and Ultra grades of bath tissue, including the production of feedstock, pulp production, and tissue production stages, with focus on Global Warming Potential (GWP). The results showed that one air-dried metric ton (ADmt) of BEK pulp had an associated GWP of 388 kgCO2eq, whereas one ADmt of NBSK pulp presented values ranging between 448 and 596 kgCO2eq, depending on the emissions allocation methodology used. It was estimated that the GWP of one finished metric ton of tissue weighted average could range from 1,392 to 3,075 kgCO2eq depending on mill location, electricity source, and machine technology. These results provide an understanding of the factors affecting the environmental impact of hygiene tissue products, which could guide manufacturers and consumers on decisions that impact their carbon footprint.}, number={2}, journal={BIORESOURCES}, author={Brito, Amelys and Suarez, Antonio and Pifano, Alonzo and Reisinger, Lee and Wright, Jeff and Saloni, Daniel and Kelley, Stephen and Gonzalez, Ronalds and Venditti, Richard and Jameel, Hasan}, year={2023}, month={May}, pages={4006–4031} } @article{hall_stape_bullock_frederick_wright_scolforo_cook_2020, title={A Growth and Yield Model for Eucalyptus benthamii in the Southeastern United States}, volume={66}, ISSN={["1938-3738"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85081127822&partnerID=MN8TOARS}, DOI={10.1093/forsci/fxz061}, abstractNote={Abstract}, number={1}, journal={FOREST SCIENCE}, author={Hall, Kevin B. and Stape, J. L. and Bullock, Bronson P. and Frederick, Doug and Wright, Jeff and Scolforo, Henrique F. and Cook, Rachel}, year={2020}, month={Feb}, pages={25–37} } @article{pirraglia_gonzalez_saloni_wright_denig_2012, title={Fuel properties and suitability of eucalyptus benthamii and eucalyptus macarthurii for torrefied wood and pellets}, volume={7}, number={1}, journal={BioResources}, author={Pirraglia, A. and Gonzalez, R. and Saloni, D. and Wright, J. and Denig, J.}, year={2012}, pages={217–235} } @article{dougherty_wright_2012, title={silviculture and economic evaluation of eucalypt plantations in the Southern US}, volume={7}, DOI={10.15376/biores.7.2.1994-2001}, abstractNote={Demand for hardwood from plantation-grown stands for pulp and bio-energy in the southern US is more than 90 million tons per year and is increasing. In the specific case of bio-energy and pulp, demand for biomass from eucalypts could approach 20 million tons/year by the year 2022. Fast growing species and hybrids of Eucalyptus are being evaluated to partially fill this demand gap. Though widely grown in a number of countries for pulp as well as for bio-energy, eucalypts in the southern US have not been extensively researched. Initial growth rates of 18 to 36 green tons/ha/year on rotation lengths of 6 to 8 years are possible. Current estimated costs for energy production from eucalypts in the Southern US are estimated at $3.10 to $3.49 per MBtu, where landowner required return rates on reforestation capital invested range from 6 to 14 percent. Eucalypts as a bio-energy feedstock can be competitive with coal in cost per BTU in the southern US.}, number={2}, journal={BioResources}, author={Dougherty, D. and Wright, J.}, year={2012}, pages={1994–2001} } @article{gonzalez_treasure_wright_saloni_phillips_abt_jameel_2011, title={Exploring the potential of Eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass. Part I}, volume={35}, ISSN={["0961-9534"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-78650762982&partnerID=MN8TOARS}, DOI={10.1016/j.biombioe.2010.10.011}, abstractNote={Eucalyptus plantations in the Southern United States offer a viable feedstock for renewable bioenergy. Delivered cost of eucalypt biomass to a bioenergy facility was simulated in order to understand how key variables affect biomass delivered cost. Three production rates (16.8, 22.4 and 28.0 Mg ha−1 y−1, dry weight basis) in two investment scenarios were compared in terms of financial analysis, to evaluate the effect of productivity and land investment on the financial indicators of the project. Delivered cost of biomass was simulated to range from $55.1 to $66.1 per delivered Mg (with freight distance of 48.3 km from plantation to biorefinery) depending on site productivity (without considering land investment) at 6% IRR. When land investment was included in the analysis, delivered biomass cost increased to range from $65.0 to $79.4 per delivered Mg depending on site productivity at 6% IRR. Conversion into cellulosic ethanol might be promising with biomass delivered cost lower than $66 Mg−1. These delivered costs and investment analysis show that Eucalyptus plantations are a potential biomass source for bioenergy production for Southern U.S.}, number={2}, journal={BIOMASS & BIOENERGY}, author={Gonzalez, R. and Treasure, T. and Wright, J. and Saloni, D. and Phillips, R. and Abt, R. and Jameel, H.}, year={2011}, month={Feb}, pages={755–766} }