@article{apparao_newman_zhang_khosla_randell_sannes_2010, title={Temporal Changes in Expression of FoxA1 and Wnt7A in Isolated Adult Human Alveolar Epithelial Cells Enhanced by Heparin}, volume={293}, ISSN={["1932-8494"]}, DOI={10.1002/ar.20805}, abstractNote={Pre- and postnatal developmental studies of the lung have provided compelling evidence demonstrating multiple factors that orchestrate alveolar epithelial cell differentiation. The extent to which reactivation of certain developmental pathways in the adult might influence the course of differentiation of alveolar type 2 cells (AT2) into AT1 cells is not known. In this study, we examined selected members of the forkhead (Fox) family of transcription factors and the Wnt (wingless) family of signaling proteins for expression during human alveolar cell differentiation in vitro and determined their potential responses to sulfated components of extracellular matrix (ECM), like those shed from cell surfaces or found in basement membrane and modeled by heparin. Isolated adult human AT2 cells cultured over a 9-day period were used to define the temporal profile of expression of targeted factors during spontaneous differentiation to AT1-like cells. FoxA1 protein was upregulated at early to intermediate time points, where it was strongly elevated by heparin. Gene expression of wnt7A increased dramatically beginning on day 3 and was enhanced even further on days 7 and 9 by heparin, whereas protein expression appeared at days 7 and 9. These temporal changes of expression suggest that sulfated ECMs may act to enhance the increase in FoxA1 at the critical juncture when AT2 cells commence the differentiation process to AT1 cells, in addition to enhancing the increase in wnt7A when the AT1 cell phenotype stabilizes. Collectively, these factors may act to modulate differentiation in the adult human pulmonary alveolus.}, number={6}, journal={ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY}, author={Apparao, K. B. C. and Newman, Donna R. and Zhang, Huiying and Khosla, Jody and Randell, Scott H. and Sannes, Philip L.}, year={2010}, month={Jun}, pages={938–946} } @article{gabr_reed_newman_pohl_khosla_sannes_2007, title={Alterations in cytoskeletal and immune function-related proteome profiles in whole rat lung following intratracheal instillation of heparin}, volume={8}, ISSN={["1465-993X"]}, DOI={10.1186/1465-9921-8-36}, abstractNote={Abstract Background Heparin has been shown to modify fundamental biologic processes ranging from blood coagulation and cell proliferation to fibrogenesis and asthma. The goal of this study was to identify specific or broad biologic responses of the rat lung to intratracheal instillation of heparin by targeted proteomic analysis. Methods Rats were given either aerosolized 500 μg heparin in 250 μl saline or saline alone. Lungs were harvested at 0, 24, or 96 hours post-treatment and isolated proteins analyzed by two-dimensional gel electrophoresis. Proteins which increased and decreased significantly in treated groups above controls were then selected for identification by mass spectrometry. Results Although heparin treatments resulted in a general reduction in cytosolic protein expression, there were significant increases within members of discrete groups of proteins. At 24 hours, proteins which function in cytoskeletal organization and in calcium signaling were up-regulated between 2- and 27-fold above baseline and untreated controls. Increased proteins include annexins V and VI, septin 2, capping G protein, actin-related protein 3, moesin, RhoGDP dissociation inhibitor, and calcyclin. A group of proteins relating to immune response and tumor suppressor function were either up-regulated (tumor suppressor p30/hyaluronic acid binding protein-1, Parkinson disease protein 7, proteosome 28 subunit/interferon-γ inducible protein, and proteosome subunit macropain α-1) or strongly down-regulated (transgelin). At 96 hours, most proteins that had increased at 24 hours remained elevated but to a much lesser degree. Conclusion These cumulative observations demonstrate that whole lung heparin treatment results in significant up-regulation of selected groups of proteins, primarily those related to cytoskeletal reorganization and immune function, which may prove to be relevant biomarkers useful in analysis of lung exposures/treatments as well as in system biology studies.}, journal={RESPIRATORY RESEARCH}, author={Gabr, Amir A. and Reed, Mathew and Newman, Donna R. and Pohl, Jan and Khosla, Jody and Sannes, Philip L.}, year={2007}, month={May} } @article{leiner_newman_li_walsh_khosla_sannes_2006, title={Heparin and fibroblast growth factors affect surfactant protein gene expression in type II cells}, volume={35}, DOI={10.1165/rcmb.2006-01590C}, number={5}, journal={American Journal of Respiratory Cell and Molecular Biology}, author={Leiner, K. A. and Newman, D. and Li, C. M. and Walsh, E. and Khosla, J. and Sannes, P. L.}, year={2006}, pages={611–618} } @article{newman_li_simmons_khosla_sannes_2004, title={Heparin affects signaling pathways stimulated by fibroblast growth factor-1 and-2 in type II cells}, volume={287}, ISSN={["1522-1504"]}, DOI={10.1152/ajplung.00284.2003}, abstractNote={Undersulfation of the basement membrane matrix of alveolar type II (AT2) cells compared with that of neighboring type I cells is believed to account for some of the known morphological and functional differences between these pneumocytes. Heparin, a model for sulfated components of basement membrane matrices, is known to inhibit fibroblast growth factor (FGF)-2-stimulated DNA synthesis as well as gene expression of FGF-2 and its receptor in AT2 cells. To determine whether these end points result from specific effects of heparin on FGF-related signaling pathways, isolated rat AT2 cells were treated with 100 ng/ml FGF-1 or FGF-2 in the presence of up to 500 microg/ml heparin. In addition, experiments were done on cells grown in the presence of 20 mM sodium chlorate (sulfation inhibitor). High-dose heparin reduced FGF-1- or FGF-2-stimulated phosphorylation of mitogen-activated protein kinase kinases (MEK1/2), p44/42 mitogen-activated protein kinases (MAPK/ERK1/2), stress-activated protein kinase/c-Jun NH(2)-terminal kinase, Akt/protein kinase B, and p90(RSK). FGF-2-stimulated signaling was more sensitive to heparin's effects than was signaling stimulated by FGF-1. Heparin had an additive effect on the reduced [(3)H]thymidine incorporation in FGF-2-treated AT2 cells caused by inhibition of the MEK/ERK pathway by the MEK inhibitor PD-98059. The data suggest that heparin's known capacity to alter DNA synthesis and, possibly, other biological end points is realized via cross talk between multiple signaling pathways.}, number={1}, journal={AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY}, author={Newman, DR and Li, CM and Simmons, R and Khosla, J and Sannes, PL}, year={2004}, month={Jul}, pages={L191–L200} } @article{li_newman_cesta_tompkins_khosla_sannes_2003, title={Modulation of fibroblast growth factor expression and signal transduction in type II cells}, volume={123}, ISSN={["0012-3692"]}, DOI={10.1378/chest.123.3_suppl.429S}, abstractNote={Fibroblast growth factors (FGFs) influence lung epithelial cells in processes relating to maintenance and repair following injury. Their role in chronic conditions such as asthma is largely unknown, but likely involves fundamental relationships between epithelium and the underlying extracellular matrix (ECM) and fibroblasts. FGFs utilize complex interactions between ECMs (eg, heparan sulfate proteoglycans), soluble cell factors (FGF-binding proteins), and relevant sequential signaling cascades. This relationship affords a crucial role for heparan sulfate proteoglycans, whose sulfated character are differentially expressed in ECMs where they are known to be potent biological modifiers. The goal of this study was to determine whether specific signaling pathways relating to FGF-1 and FGF-2 and expression of selected genes were altered by the model ECM heparin. Phosphorylation (p) of extracellular signal-regulated kinase-1/extracellular signal-regulated-2 was found to be reduced by 500 μg/mL of heparin in type II cells stimulated with 50 to 100 ng/mL of FGF-1 or FGF-2 at 15 min. p-RAF was elevated by low concentrations of heparin with FGF-1 but reduced by heparin with FGF-2. p-c-Myc was reduced by high heparin but elevated by low heparin with FGF-1; 500 μg/mL of heparin down-regulated gene expression of FGF-1, FGF-2, and FGF-7, FGF receptor-2, and FGF binding protein, but not FGFR-1, in type II cells with and without treatment with FGF-1 or FGF-2. Co-culture of type II cells with fibroblasts resulted in reduced expression in the former of FGF-1 and FGF-2, and FGF receptor-2(IIIb), but not FGFR-1 or FGFR-2, and elevation of FGF binding protein. These results demonstrate important regulatory links between FGFs and sulfated ECMs and implicate key interactions between type II cells and fibroblasts in the modulation of airway/alveolar diseases in the lung.}, number={3}, journal={CHEST}, author={Li, CM and Newman, D and Cesta, M and Tompkins, L and Khosla, J and Sannes, PL}, year={2003}, month={Mar}, pages={429S–429S} } @article{pagan_khosla_li_sannes_2002, title={Effect of growth factor-fibronectin matrix interaction on rat type II cell adhesion and DNA synthesis}, volume={28}, ISSN={["0190-2148"]}, DOI={10.1080/019021402753462013}, abstractNote={Type II cells attach, migrate, and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiate the signals required for cell proliferation, differentiation, reepithelialization, and ultimate restoration of the alveolar wall structure. Accordingly, primary cultured type II cells have been shown to bind fibronectin, in part through the α 5 β 1 integrin, and to respond to growth factors that induce type II cell proliferation, such as fibroblast growth factor 1 (FGF-1). The purpose of this study was to determine whether or not FGF-1 modifies type II cell attachment to fibronectin, and if together they affect DNA synthesis. Attachment assays showed that FGF-1 treatment enhanced type II cell adhesion to fibronectin. This effect correlated with an increase in β 1 integrin cell surface expression, and with the formation of cytoskeletal stabilizing structures such as lamellipodial extensions and stress fibers. FGF-1 also induced an increase in thymidine in corporation into DNA. Together FGF-1 and fibronectin appear to promote adhesion, cytoskeletal organization, and in creased DNA synthesis, and in this way influence cell-substratum interactions and signaling during alveolar repair.}, number={2}, journal={EXPERIMENTAL LUNG RESEARCH}, author={Pagan, I and Khosla, J and Li, CM and Sannes, PL}, year={2002}, month={Mar}, pages={69–84} } @article{li_newman_khosla_sannes_2002, title={Heparin inhibits DNA synthesis and gene expression in alveolar type II cells}, volume={27}, ISSN={["1535-4989"]}, DOI={10.1165/rcmb.2002-0002OC}, abstractNote={Section:ChooseTop of pageAbstract <