@article{chen_parekh_seliman_bakshinskaya_dai_kwan_chen_liu_2018, title={Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction}, volume={293}, ISSN={["1083-351X"]}, DOI={10.1074/jbc.RA118.002933}, abstractNote={PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB versus diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103QExon1–EGFP expression. Quantitative image analysis indicated that 80–90% of this mHtt protein initially appears as “diffuse” signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse versus IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron–derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.}, number={40}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Chen, Justin Y. and Parekh, Miloni and Seliman, Hadear and Bakshinskaya, Dariya and Dai, Wei and Kwan, Kelvin and Chen, Kuang Yu and Liu, Alice Y. C.}, year={2018}, month={Oct}, pages={15581–15593} } @article{su_huang_ma_liang_dinh_chen_shen_allen_qiao_li_et al._2019, title={Platelet-Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury}, volume={29}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.201803567}, abstractNote={AbstractCardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post‐heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post‐ischemic recovery. A platelet‐inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)‐modified platelet membrane and cardiac stromal cell‐secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct‐homing ability of platelet membrane and the overexpression of PGE2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.}, number={4}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Su, Teng and Huang, Ke and Ma, Hong and Liang, Hongxia and Dinh, Phuong-Uyen and Chen, Justin and Shen, Deliang and Allen, Tyler A. and Qiao, Li and Li, Zhenhua and et al.}, year={2019}, month={Jan} }