@article{hu_li_shen_zhu_huang_su_dinh_cores_cheng_2021, title={Exosome-eluting stents for vascular healing after ischaemic injury}, volume={5}, ISSN={["2157-846X"]}, url={https://doi.org/10.1038/s41551-021-00705-0}, DOI={10.1038/s41551-021-00705-0}, abstractNote={Drug-eluting stents implanted after ischaemic injury reduce the proliferation of endothelial cells and vascular smooth muscle cells and thus neointimal hyperplasia. However, the eluted drug also slows down the re-endothelialization process, delays arterial healing and can increase the risk of late restenosis. Here we show that stents releasing exosomes derived from mesenchymal stem cells in the presence of reactive oxygen species enhance vascular healing in rats with renal ischaemia-reperfusion injury, promoting endothelial cell tube formation and proliferation, and impairing the migration of smooth muscle cells. Compared with drug-eluting stents and bare-metal stents, the exosome-coated stents accelerated re-endothelialization and decreased in-stent restenosis 28 days after implantation. We also show that exosome-eluting stents implanted in the abdominal aorta of rats with unilateral hindlimb ischaemia regulated macrophage polarization, reduced local vascular and systemic inflammation, and promoted muscle tissue repair. Exosome-eluting stents implanted in rats after ischaemic injury accelerate vascular healing and promote tissue regeneration.}, number={10}, journal={NATURE BIOMEDICAL ENGINEERING}, publisher={Springer Science and Business Media LLC}, author={Hu, Shiqi and Li, Zhenhua and Shen, Deliang and Zhu, Dashuai and Huang, Ke and Su, Teng and Dinh, Phuong-Uyen and Cores, Jhon and Cheng, Ke}, year={2021}, month={Oct}, pages={1174–1188} } @article{wang_hu_li_zhu_wang_cores_cheng_liu_huang_2021, title={Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair}, volume={13}, ISSN={["1944-8252"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85119954105&partnerID=MN8TOARS}, DOI={10.1021/acsami.1c08044}, abstractNote={Mesenchymal stem cells (MSCs) repair injured tissues mainly through their paracrine actions. One of the important paracrine components of MSC secretomes is the extracellular vesicle (EV). The therapeutic potential of MSC-EVs has been established in various cardiac injury preclinical models. However, the large-scale production of EVs remains a challenge. We sought to develop a scale-up friendly method to generate a large number of therapeutic nanovesicles from MSCs by extrusion. Those extruded nanovesicles (NVs) are miniature versions of MSCs in terms of surface marker expression. The yield of NVs is 20-fold more than that of EVs. In vitro, cell-based assays demonstrated the myocardial protective effects and therapeutic potential of NVs. Intramyocardial delivery of NVs in the injured heart after ischemia-reperfusion led to a reduction in scar sizes and preservation of cardiac functions. Such therapeutic benefits are similar to those injected with natural EVs from the same MSC parental cells. In addition, NV therapy promoted angiogenesis and proliferation of cardiomyocytes in the post-injury heart. In summary, extrusion is a highly efficient method to generate a large quantity of therapeutic NVs that can potentially replace extracellular vesicles in regenerative medicine applications.}, number={47}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Wang, Xianyun and Hu, Shiqi and Li, Junlang and Zhu, Dashuai and Wang, Zhenzhen and Cores, Jhon and Cheng, Ke and Liu, Gang and Huang, Ke}, year={2021}, month={Dec}, pages={55767–55779} } @article{hu_wang_li_zhu_cores_wang_li_mei_cheng_su_et al._2021, title={Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury}, volume={39}, ISSN={["1878-044X"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85107566346&partnerID=MN8TOARS}, DOI={10.1016/j.nantod.2021.101210}, abstractNote={Exosomes from mesenchymal stem cells have been largely studied as therapeutics to treat myocardial infarctions. However, exosomes injected for therapeutic purposes face a number of challenges, including competition from exosomes already in circulation, and the internalization/clearance by the mononuclear phagocyte system. In this study, we hybrid exosomes with platelet membranes to enhance their ability to target the injured heart and avoid being captured by macrophages. Furthermore, we found that encapsulation by the platelet membranes induces macropinocytosis, enhancing the cellular uptake of exosomes by endothelial cells and cardiomyocytes strikingly. In vivo studies showed that the cardiac targeting ability of hybrid exosomes in a mice model with myocardial infarction injury. Last, we tested cardiac functions and performed immunohistochemistry to confirm a better therapeutic effect of platelet membrane modified exosomes compared to non-modified exosomes. Our studies provide proof-of-concept data and a universal approach to enhance the binding and accumulation of exosomes in injured tissues.}, journal={NANO TODAY}, author={Hu, Shiqi and Wang, Xianyun and Li, Zhenhua and Zhu, Dashuai and Cores, Jhon and Wang, Zhenzhen and Li, Junlang and Mei, Xuan and Cheng, Xiao and Su, Teng and et al.}, year={2021}, month={Aug} } @article{su_huang_mathews_scharf_hu_li_frame_cores_dinh_daniele_et al._2020, title={Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs}, volume={6}, ISSN={["2373-9878"]}, DOI={10.1021/acsbiomaterials.0c00942}, abstractNote={The vascularized cardiac patch strategy is promising for ischemic heart repair after myocardial infarction (MI), but current fabrication processes are quite complicated. Vascularized cardiac patches that can promote concurrent restoration of both the myocardium and vasculature at the injured site in a large animal model remain elusive. The safety and therapeutic benefits of a cardiac stromal cell patch integrated with engineered biomimetic microvessels (BMVs) were determined for treating MI. By leveraging a microfluidic method employing hydrodynamic focusing, we constructed the endothelialized microvessels and then encapsulated them together with therapeutic cardiosphere-derived stromal cells (CSCs) in a fibrin gel to generate a prevascularized cardiac stromal cell patch (BMV-CSC patch). We showed that BMV-CSC patch transplantation significantly promoted cardiac function, reduced scar size, increased viable myocardial tissue, promoted neovascularization, and suppressed inflammation in rat and porcine MI models, demonstrating enhanced therapeutic efficacy compared to conventional cardiac stromal cell patches. BMV-CSC patches did not increase renal and hepatic toxicity or exhibit immunogenicity. We noted a significant increase in endogenous progenitor cell recruitment to the peri-infarct region of the porcine hearts treated with BMV-CSC patch as compared to those that received control treatments. These findings establish the BMV-CSC patch as a novel engineered-tissue therapeutic for ischemic tissue repair.}, number={11}, journal={ACS BIOMATERIALS SCIENCE & ENGINEERING}, author={Su, Teng and Huang, Ke and Mathews, Kyle G. and Scharf, Valery F. and Hu, Shiqi and Li, Zhenhua and Frame, Brianna N. and Cores, Jhon and Dinh, Phuong-Uyen and Daniele, Michael A. and et al.}, year={2020}, month={Nov}, pages={6309–6320} } @article{hu_li_lutz_huang_su_cores_dinh_cheng_2020, title={Dermal exosomes containing miR-218-5p promote hair regeneration by regulating beta-catenin signaling}, volume={6}, ISSN={["2375-2548"]}, url={https://doi.org/10.1126/sciadv.aba1685}, DOI={10.1126/sciadv.aba1685}, abstractNote={Exosomes derived from dermal papilla spheroids express a high level of miR-218-5p, which directly regulates hair regeneration. The progression in the hair follicle cycle from the telogen to the anagen phase is the key to regulating hair regrowth. Dermal papilla (DP) cells support hair growth and regulate the hair cycle. However, they gradually lose key inductive properties upon culture. DP cells can partially restore their capacity to promote hair regrowth after being subjected to spheroid culture. In this study, results revealed that DP spheroids are effective at inducing the progression of the hair follicle cycle from telogen to anagen compared with just DP cell or minoxidil treatment. Because of the importance of paracrine signaling in this process, secretome and exosomes were isolated from DP cell culture, and their therapeutic efficacies were investigated. We demonstrated that miR-218-5p was notably up-regulated in DP spheroid–derived exosomes. Western blot and immunofluorescence imaging were used to demonstrate that DP spheroid–derived exosomes up-regulated β-catenin, promoting the development of hair follicles.}, number={30}, journal={SCIENCE ADVANCES}, publisher={American Association for the Advancement of Science (AAAS)}, author={Hu, Shiqi and Li, Zhenhua and Lutz, Halle and Huang, Ke and Su, Teng and Cores, Jhon and Dinh, Phuong-Uyen Cao and Cheng, Ke}, year={2020}, month={Jul} } @article{dinh_paudel_brochu_popowski_gracieux_cores_huang_hensley_harrell_vandergriff_et al._2020, title={Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis}, volume={11}, ISSN={["2041-1723"]}, url={http://dx.doi.org/10.1038/s41467-020-14344-7}, DOI={10.1038/s41467-020-14344-7}, abstractNote={Abstract Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable form of interstitial lung disease in which persistent injury results in scar tissue formation. As fibrosis thickens, the lung tissue loses the ability to facilitate gas exchange and provide cells with needed oxygen. Currently, IPF has few treatment options and no effective therapies, aside from lung transplant. Here we present a series of studies utilizing lung spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) by inhalation to treat different models of lung injury and fibrosis. Analysis reveals that LSC-Sec and LSC-Exo treatments could attenuate and resolve bleomycin- and silica-induced fibrosis by reestablishing normal alveolar structure and decreasing both collagen accumulation and myofibroblast proliferation. Additionally, LSC-Sec and LSC-Exo exhibit superior therapeutic benefits than their counterparts derived from mesenchymal stem cells in some measures. We showed that an inhalation treatment of secretome and exosome exhibited therapeutic potential for lung regeneration in two experimental models of pulmonary fibrosis.}, number={1}, journal={NATURE COMMUNICATIONS}, publisher={Springer Science and Business Media LLC}, author={Dinh, Phuong-Uyen C. and Paudel, Dipti and Brochu, Hayden and Popowski, Kristen D. and Gracieux, M. Cyndell and Cores, Jhon and Huang, Ke and Hensley, M. Taylor and Harrell, Erin and Vandergriff, Adam C. and et al.}, year={2020}, month={Feb} } @article{li_hu_huang_su_cores_cheng_2020, title={Targeted anti-IL-1 beta platelet microparticles for cardiac detoxing and repair}, volume={6}, ISSN={["2375-2548"]}, url={https://doi.org/10.1126/sciadv.aay0589}, DOI={10.1126/sciadv.aay0589}, abstractNote={Platelet microparticles are used to deliver IL-1β antibodies to myocardial infarction for cardiac detoxing and repair. An acute myocardial infarction (AMI) induces a sterile inflammatory response that facilitates further heart injury and promotes adverse cardiac remodeling. Interleukin-1β (IL-1β) plays a central role in the sterile inflammatory response that results from AMI. Thus, IL-1β blockage is a promising strategy for treatment of AMI. However, conventional IL-1β blockers lack targeting specificity. This increases the risk of serious side effects. To address this problem herein, we fabricated platelet microparticles (PMs) armed with anti–IL-1β antibodies to neutralize IL-1β after AMI and to prevent adverse cardiac remodeling. Our results indicate that the infarct-targeting PMs could bind to the injured heart, increasing the number of anti–IL-1β antibodies therein. The anti–IL-1β platelet PMs (IL1-PMs) protect the cardiomyocytes from apoptosis by neutralizing IL-1β and decreasing IL-1β–driven caspase-3 activity. Our findings indicate that IL1-PM is a promising cardiac detoxification agent that removes cytotoxic IL-1β during AMI and induces therapeutic cardiac repair.}, number={6}, journal={SCIENCE ADVANCES}, publisher={American Association for the Advancement of Science (AAAS)}, author={Li, Zhenhua and Hu, Shiqi and Huang, Ke and Su, Teng and Cores, Jhon and Cheng, Ke}, year={2020}, month={Feb} } @article{qiao_hu_huang_su_li_vandergriff_cores_dinh_allen_shen_et al._2020, title={Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs}, volume={10}, ISSN={["1838-7640"]}, DOI={10.7150/thno.39434}, abstractNote={Cancer is the second leading cause of death worldwide and patients are in urgent need of therapies that can effectively target cancer with minimal off-target side effects. Exosomes are extracellular nano-shuttles that facilitate intercellular communication between cells and organs. It has been established that tumor-derived exosomes contain a similar protein and lipid composition to that of the cells that secrete them, indicating that exosomes might be uniquely employed as carriers for anti-cancer therapeutics. Methods: We isolated exosomes from two cancer cell lines, then co-cultured each type of cancer cells with these two kinds of exosomes and quantified exosome. HT1080 or Hela exosomes were systemically injected to Nude mice bearing a subcutaneous HT1080 tumor to investigate their cancer-homing behavior. Moreover, cancer cell-derived exosomes were engineered to carry Doxil (a common chemotherapy drug), known as D-exo, were used to detect their target and therapeutic efficacy as anti-cancer drugs. Exosome proteome array analysis were used to reveal the mechanism underly this phenomenon. Results: Exosomes derived from cancer cells fuse preferentially with their parent cancer cells, in vitro. Systemically injected tumor-derived exosomes home to their original tumor tissues. Moreover, compared to Doxil alone, the drug-loaded exosomes showed enhanced therapeutic retention in tumor tissues and eradicated them more effectively in nude mice. Exosome proteome array analysis revealed distinct integrin expression patterns, which might shed light on the underlying mechanisms that explain the exosomal cancer-homing behavior. Conclusion: Here we demonstrate that the exosomes' ability to target the parent cancer is a phenomenon that opens up new ways to devise targeted therapies to deliver anti-tumor drugs.}, number={8}, journal={THERANOSTICS}, author={Qiao, Li and Hu, Shiqi and Huang, Ke and Su, Teng and Li, Zhenhua and Vandergriff, Adam and Cores, Jhon and Dinh, Phuong-Uyen and Allen, Tyler and Shen, Deliang and et al.}, year={2020}, pages={3474–3487} } @article{hu_li_cores_huang_su_dinh_cheng_2019, title={Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging}, volume={13}, ISSN={["1936-086X"]}, DOI={10.1021/acsnano.9b04384}, abstractNote={Human dermal fibroblasts (HDFs), the main cell population of the dermis, gradually lose their ability to produce collagen and renew intercellular matrix with aging. One clinical application for the autologous trans-dermis injection of HDFs that has been approved by the Food and Drug Administration aims to refine facial contours and slow down skin aging. However, the autologous HDFs used vary in quality according to the state of patients and due to many passages they undergo during expansion. In this study, factors and exosomes derived from three-dimensional spheroids (3D HDF-XOs) and the monolayer culture of HDFs (2D HDF-XOs) were collected and compared. 3D HDF-XOs expressed a significantly higher level of tissue inhibitor of metalloproteinases-1 (TIMP-1) and differentially expressed miRNA cargos compared with 2D HDF-XOs. Next, the efficacy of 3D HDF-XOs in inducing collagen synthesis and antiaging was demonstrated in vitro and in a nude mouse photoaging model. A needle-free injector was used to administer exosome treatments. 3D HDF-XOs caused increased procollagen type I expression and a significant decrease in MMP-1 expression, mainly through the downregulation of tumor necrosis factor-alpha (TNF-α) and the upregulation of transforming growth factor beta (TGF-β). In addition, the 3D-HDF-XOs group showed a higher level of dermal collagen deposition than bone marrow mesenchymal stem cell-derived exosomes. These results indicate that exosomes from 3D cultured HDF spheroids have anti-skin-aging properties and the potential to prevent and treat cutaneous aging.}, number={10}, journal={ACS NANO}, author={Hu, Shiqi and Li, Zhenhua and Cores, Jhon and Huang, Ke and Su, Teng and Dinh, Phuong-Uyen and Cheng, Ke}, year={2019}, month={Oct}, pages={11273–11282} } @article{su_huang_ma_liang_dinh_chen_shen_allen_qiao_li_et al._2019, title={Platelet-Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury}, volume={29}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.201803567}, abstractNote={Cardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post‐heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post‐ischemic recovery. A platelet‐inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)‐modified platelet membrane and cardiac stromal cell‐secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct‐homing ability of platelet membrane and the overexpression of PGE2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.}, number={4}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Su, Teng and Huang, Ke and Ma, Hong and Liang, Hongxia and Dinh, Phuong-Uyen and Chen, Justin and Shen, Deliang and Allen, Tyler A. and Qiao, Li and Li, Zhenhua and et al.}, year={2019}, month={Jan} } @article{gasior_wagner_cores_caspar_wilson_bhattacharya_hauck_2019, title={The role of cellular contact and TGF-beta signaling in the activation of the epithelial mesenchymal transition (EMT)}, volume={13}, ISSN={["1933-6926"]}, url={https://doi.org/10.1080/19336918.2018.1526597}, DOI={10.1080/19336918.2018.1526597}, abstractNote={ABSTRACT The epithelial mesenchymal transition (EMT) is one step in the process through which carcinoma cells metastasize by gaining the cellular mobility associated with mesenchymal cells. This work examines the dual influence of the TGF-β pathway and intercellular contact on the activation of EMT in colon (SW480) and breast (MCF7) carcinoma cells. While the SW480 population revealed an intermediate state between the epithelial and mesenchymal states, the MC7 cells exhibited highly adhesive behavior. However, for both cell lines, an exogenous TGF-β signal and a reduction in cellular confluence can push a subgroup of the population towards the mesenchymal phenotype. Together, these results highlight that, while EMT is induced by the synergy of multiple signals, this activation varies across cell types.}, number={1}, journal={CELL ADHESION & MIGRATION}, publisher={Informa UK Limited}, author={Gasior, Kelsey and Wagner, Nikki J. and Cores, Jhon and Caspar, Rose and Wilson, Alyson and Bhattacharya, Sudin and Hauck, Marlene L.}, year={2019}, pages={63–75} } @article{qiao_hu_liu_zhang_ma_huang_li_su_vandergrif_tang_et al._2019, title={microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential}, volume={129}, ISSN={["1558-8238"]}, url={https://doi.org/10.1172/JCI123135}, DOI={10.1172/JCI123135}, abstractNote={Exosomes, as functional paracrine units of therapeutic cells, can partially reproduce the reparative properties of their parental cells. The constitution of exosomes, as well as their biological activity, largely depends on the cells that secrete them. We isolated exosomes from explant-derived cardiac stromal cells from patients with heart failure (FEXO) or from normal donor hearts (NEXO) and compared their regenerative activities in vitro and in vivo. Patients in the FEXO group exhibited an impaired ability to promote endothelial tube formation and cardiomyocyte proliferation in vitro. Intramyocardial injection of NEXO resulted in structural and functional improvements in a murine model of acute myocardial infarction. In contrast, FEXO therapy exacerbated cardiac function and left ventricular remodeling. microRNA array and PCR analysis revealed dysregulation of miR-21-5p in FEXO. Restoring miR-21-5p expression rescued FEXO's reparative function, whereas blunting miR-21-5p expression in NEXO diminished its therapeutic benefits. Further mechanistic studies revealed that miR-21-5p augmented Akt kinase activity through the inhibition of phosphatase and tensin homolog. Taken together, the heart failure pathological condition altered the miR cargos of cardiac-derived exosomes and impaired their regenerative activities. miR-21-5p contributes to exosome-mediated heart repair by enhancing angiogenesis and cardiomyocyte survival through the phosphatase and tensin homolog/Akt pathway.}, number={6}, journal={JOURNAL OF CLINICAL INVESTIGATION}, publisher={American Society for Clinical Investigation}, author={Qiao, Li and Hu, Shiqi and Liu, Suyun and Zhang, Hui and Ma, Hong and Huang, Ke and Li, Zhenhua and Su, Teng and Vandergrif, Adam and Tang, Junnan and et al.}, year={2019}, month={Jun}, pages={2237–2250} } @article{tang_cores_huang_cui_luo_zhang_li_qian_cheng_2018, title={Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future}, volume={7}, ISSN={2157-6564 2157-6580}, url={http://dx.doi.org/10.1002/sctm.17-0196}, DOI={10.1002/sctm.17-0196}, abstractNote={Stem cell therapy is a promising strategy for tissue regeneration. The therapeutic benefits of cell therapy are mediated by both direct and indirect mechanisms. However, the application of stem cell therapy in the clinic is hampered by several limitations. This concise review provides a brief introduction into stem cell therapies for ischemic heart disease. It summarizes cell‐based and cell‐free paradigms, their limitations, and the benefits of using them to target disease. Stem Cells Translational Medicine 2018;7:354–359}, number={4}, journal={Stem Cells Translational Medicine}, publisher={Oxford University Press (OUP)}, author={Tang, Jun-Nan and Cores, Jhon and Huang, Ke and Cui, Xiao-Lin and Luo, Lan and Zhang, Jin-Ying and Li, Tao-Sheng and Qian, Li and Cheng, Ke}, year={2018}, month={Feb}, pages={354–359} } @article{tang_su_huang_dinh_wang_vandergriff_hensley_cores_allen_li_et al._2018, title={Targeted repair of heart injury by stem cells fused with platelet nanovesicles}, volume={2}, ISSN={["2157-846X"]}, url={https://europepmc.org/articles/PMC5976251}, DOI={10.1038/s41551-017-0182-x}, abstractNote={Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, we hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury. Here, we show that CSCs with platelet nanovesicles fused onto their surface membranes express platelet surface markers that are associated with platelet adhesion to injury sites. We also find that the modified CSCs selectively bind collagen-coated surfaces and endothelium-denuded rat aortas, and that in rat and porcine models of acute myocardial infarction the modified CSCs increase retention in the heart and reduce infarct size. Platelet-nanovesicle-fused CSCs thus possess the natural targeting and repairing ability of their parental cell types. This stem cell manipulation approach is fast, straightforward and safe, does not require genetic alteration of the cells, and should be generalizable to multiple cell types. The attachment of platelet nanovesicles to the surface of cardiac stem cells increases the retention of the cells delivered to the heart and reduces infarct size in rat and pig models of acute myocardial infarction.}, number={1}, journal={NATURE BIOMEDICAL ENGINEERING}, author={Tang, Junnan and Su, Teng and Huang, Ke and Dinh, Phuong-Uyen and Wang, Zegen and Vandergriff, Adam and Hensley, Michael T. and Cores, Jhon and Allen, Tyler and Li, Taosheng and et al.}, year={2018}, month={Jan}, pages={17–26} } @article{tang_vandergriff_wang_hensley_cores_allen_dinh_zhang_caranasos_cheng_2017, title={A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart}, volume={23}, ISSN={1937-3384 1937-3392}, url={http://dx.doi.org/10.1089/ten.TEC.2016.0492}, DOI={10.1089/ten.tec.2016.0492}, abstractNote={Layering a regenerative polymer scaffold on the surface of the heart, termed as a cardiac patch, has been proven to be effective in preserving cardiac function after myocardial infarction (MI). However, the placement of such a patch on the heart usually needs open-chest surgery, which is traumatic, therefore prevents the translation of this strategy into the clinic. We sought to device a way to apply a cardiac patch by spray painting in situ polymerizable biomaterials onto the heart with a minimally invasive procedure. To prove the concept, we used platelet fibrin gel as the "paint" material in a mouse model of MI. The use of the spraying system allowed for placement of a uniform cardiac patch on the heart in a mini-invasive manner without the need for sutures or glue. The spray treatment promoted cardiac repair and attenuated cardiac dysfunction after MI.}, number={3}, journal={Tissue Engineering Part C: Methods}, publisher={Mary Ann Liebert Inc}, author={Tang, Junnan and Vandergriff, Adam and Wang, Zegen and Hensley, Michael Taylor and Cores, Jhon and Allen, Tyler A. and Dinh, Phuong-Uyen and Zhang, Jinying and Caranasos, Thomas George and Cheng, Ke}, year={2017}, month={Mar}, pages={146–155} } @article{cores_hensley_kinlaw_rikard_dinh_paudel_tang_vandergriff_allen_li_et al._2017, title={Safety and Efficacy of Allogeneic Lung Spheroid Cells in a Mismatched Rat Model of Pulmonary Fibrosis}, volume={6}, ISSN={2157-6564}, url={http://dx.doi.org/10.1002/sctm.16-0374}, DOI={10.1002/sctm.16-0374}, abstractNote={Idiopathic pulmonary fibrosis is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix causing lung distortions and dysfunctions. The prognosis after detection is merely 3–5 years and the only two Food and Drug Administration‐approved drugs treat the symptoms, not the disease, and have numerous side effects. Stem cell therapy is a promising treatment strategy for pulmonary fibrosis. Current animal and clinical studies focus on the use of adipose or bone marrow‐derived mesenchymal stem cells. We, instead, have established adult lung spheroid cells (LSCs) as an intrinsic source of therapeutic lung stem cells. In the present study, we compared the efficacy and safety of syngeneic and allogeneic LSCs in immuno‐competent rats with bleomycin‐induced pulmonary inflammation in an effort to mitigate fibrosis development. We found that infusion of allogeneic LSCs reduces the progression of inflammation and fibrotic manifestation and preserves epithelial and endothelial health without eliciting significant immune rejection. Our study sheds light on potential future developments of LSCs as an allogeneic cell therapy for humans with pulmonary fibrosis. Stem Cells Translational Medicine 2017;9:1905–1916}, number={10}, journal={STEM CELLS Translational Medicine}, publisher={Wiley}, author={Cores, Jhon and Hensley, M. Taylor and Kinlaw, Kathryn and Rikard, S. Michaela and Dinh, Phuong-Uyen and Paudel, Dipti and Tang, Junnan and Vandergriff, Adam C. and Allen, Tyler A. and Li, Yazhou and et al.}, year={2017}, month={Aug}, pages={1905–1916} } @article{tang_shen_caranasos_wang_vandergriff_allen_hensley_dinh_cores_li_et al._2017, title={Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13724}, DOI={10.1038/ncomms13724}, abstractNote={Abstract Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration.}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Tang, Junnan and Shen, Deliang and Caranasos, Thomas George and Wang, Zegen and Vandergriff, Adam C. and Allen, Tyler A. and Hensley, Michael Taylor and Dinh, Phuong-Uyen and Cores, Jhon and Li, Tao-Sheng and et al.}, year={2017}, month={Jan} } @article{allen_gracieux_talib_tokarz_hensley_cores_vandergriff_tang_de andrade_dinh_et al._2016, title={Angiopellosis as an Alternative Mechanism of Cell Extravasation}, volume={35}, ISSN={1066-5099}, url={http://dx.doi.org/10.1002/stem.2451}, DOI={10.1002/stem.2451}, abstractNote={Stem cells possess the ability to home in and travel to damaged tissue when injected intravenously. For the cells to exert their therapeutic effect, they must cross the blood vessel wall and enter the surrounding tissues. The mechanism of extravasation injected stem cells employ for exit has yet to be characterized. Using intravital microscopy and a transgenic zebrafish line Tg(fli1a:egpf) with GFP‐expressing vasculature, we documented the detailed extravasation processes in vivo for injected stem cells in comparison to white blood cells (WBCs). While WBCs left the blood vessels by the standard diapedesis process, injected cardiac and mesenchymal stem cells underwent a distinct method of extravasation that was markedly different from diapedesis. Here, the vascular wall undergoes an extensive remodeling to allow the cell to exit the lumen, while the injected cell remains distinctively passive in activity. We termed this process Angio‐pello‐sis, which represents an alternative mechanism of cell extravasation to the prevailing theory of diapedesis. Stem Cells 2017;35:170–180}, number={1}, journal={STEM CELLS}, publisher={Wiley}, author={Allen, Tyler A. and Gracieux, David and Talib, Maliha and Tokarz, Debra A. and Hensley, M. Taylor and Cores, Jhon and Vandergriff, Adam and Tang, Junnan and de Andrade, James B.M. and Dinh, Phuong-Uyen and et al.}, year={2016}, month={Jul}, pages={170–180} } @article{henry_cores_hensley_anthony_vandergriff_andrade_allen_caranasos_lobo_cheng_2015, title={Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis}, volume={4}, ISSN={["2157-6580"]}, DOI={10.5966/sctm.2015-0062}, abstractNote={Abstract Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. Significance The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis.}, number={11}, journal={STEM CELLS TRANSLATIONAL MEDICINE}, author={Henry, Eric and Cores, Jhon and Hensley, M. Taylor and Anthony, Shirena and Vandergriff, Adam and Andrade, James B. M. and Allen, Tyler and Caranasos, Thomas G. and Lobo, Leonard J. and Cheng, Ke}, year={2015}, month={Nov}, pages={1265–1274} } @article{andrade_tang_hensley_vandergriff_cores_henry_allen_caranasos_wang_zhang_et al._2015, title={Rapid and Efficient Production of Coronary Artery Ligation and Myocardial Infarction in Mice Using Surgical Clips}, volume={10}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0143221}, abstractNote={Aims The coronary artery ligation model in rodents mimics human myocardial infarction (MI). Normally mechanical ventilation and prolonged anesthesia period are needed. Recently, a method has been developed to create MI by popping-out the heart (without ventilation) followed by immediate suture ligation. Mortality is high due to the time-consuming suture ligation process while the heart is exposed. We sought to improve this method and reduce mortality by rapid coronary ligation using a surgical clip instead of a suture. Methods and Results Mice were randomized into 3 groups: clip MI (CMI), suture MI (SMI), or sham (SHAM). In all groups, heart was manually exposed without intubation through a small incision on the chest wall. Unlike the conventional SMI method, mice in the CMI group received a metal clip on left anterior descending artery (LAD), quickly dispensed by an AutoSuture Surgiclip™. The CMI method took only 1/3 of ligation time of the standard SMI method and improved post-MI survival rate. TTC staining and Masson’s trichrome staining revealed a similar degree of infarct size in the SMI and CMI groups. Echocardiograph confirmed that both SMI and CMI groups had a similar reduction of ejection fraction and fraction shortening over the time. Histological analysis showed that the numbers of CD68+ macrophages and apoptotic cells (TUNEL-positive) are indistinguishable between the two groups. Conclusion This new method, taking only less than 3 minutes to complete, represents an efficient myocardial infarction model in rodents.}, number={11}, journal={PLOS ONE}, author={Andrade, James N. B. M. and Tang, Junnan and Hensley, Michael Taylor and Vandergriff, Adam and Cores, Jhon and Henry, Eric and Allen, Tyler A. and Caranasos, Thomas George and Wang, Zegen and Zhang, Tianxia and et al.}, year={2015}, month={Nov} }