@article{zhou_dieffenderfer_sennik_aleem_speight_vasisht_oralkan_lee_misra_2023, title={Performance of A Monolithic E-Nose Array Integrating MEMS and ALD Processing}, ISSN={["1930-0395"]}, DOI={10.1109/SENSORS56945.2023.10325054}, abstractNote={We demonstrate a novel electronic nose (E-nose), which combines microelectromechanical systems (MEMS) and atomic layer deposition (ALD) technologies. MEMS micromachining creates a monolithic microheater array, consisting of independently controlled rows. By changing temperature profiles, a wide range of sensing surfaces are available. Sensor electrodes are arranged in crossbars with microheater rows. SnO2 thin film is deposited on this array as sensing materials by ALD. This E-nose demonstrates excellent fundamental operating characteristics such as speed and repeatability. It is ultra-sensitive against multiple volatile organic compounds (VOCs). It can also intrinsically separate VOC mixtures by tuning its operating modes.}, journal={2023 IEEE SENSORS}, author={Zhou, Yilu and Dieffenderfer, James and Sennik, Erdem and Aleem, Mahaboobbatcha and Speight, Jakob and Vasisht, Shrey and Oralkan, Omer and Lee, Bongmook and Misra, Veena}, year={2023} }