@article{jordan_lancaster_lanier_lassiter_johnson_2009, title={Peanut and Eclipta (Eclipta prostrata) Response to Flumioxazin}, volume={23}, ISSN={["0890-037X"]}, DOI={10.1614/WT-08-050.1}, abstractNote={Research was conducted in North Carolina to determine peanut response to flumioxazin as influenced by rate and timing of application and cultivar. Delaying application of flumioxazin from 1 d after planting until peanut emergence increased injury regardless of rate. The Virginia market-type cultivar ‘NC-V 11’ was injured more by flumioxazin than the cultivars ‘Gregory’ or ‘Perry’. However, pod yield was not affected by flumioxazin even though significant injury was observed early in the season regardless of flumioxazin rate, application timing, or cultivar. Diclosulam was more effective than flumioxazin in controlling eclipta when these herbicides were applied PRE with metolachlor or following pendimethalin PPI. However, control by flumioxazin prevented yield loss when compared with metolachlor alone.}, number={2}, journal={WEED TECHNOLOGY}, author={Jordan, David L. and Lancaster, Sarah H. and Lanier, James E. and Lassiter, Bridget R. and Johnson, P. Dewayne}, year={2009}, pages={231–235} } @article{jordan_lancaster_lanier_lassiter_johnson_2009, title={Weed Management in Peanut with Herbicide Combinations Containing Imazapic and Other Pesticides}, volume={23}, ISSN={["1550-2740"]}, DOI={10.1614/WT-08-041.1}, abstractNote={Research was conducted in North Carolina to compare weed control by various rates of imazapic POST alone or following diclosulam PRE. In a second experiment, weed control by imazapic applied POST alone or with acifluoren, diclosulam, or 2,4-DB was compared. In a final experiment, yellow nutsedge control by imazapic alone and with the fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole was compared. Large crabgrass was controlled more effectively by imazapic POST than diclosulam PRE. Common lambsquarters, common ragweed, and eclipta were controlled more effectively by diclosulam PRE than imazapic POST. Nodding spurge was controlled similarly by both herbicides. Few differences in control were noted when comparing imazapic rates after diclosulam PRE. Applying either diclosulam PRE or imazapic POST alone or in combination increased peanut yield over nontreated peanut in five of six experiments. Few differences in pod yield were noted when comparing imazapic rates. Acifluorfen, diclosulam, and 2,4-DB did not affect entireleaf morningglory, large crabgrass, nodding spurge, pitted morningglory, and yellow nutsedge control by imazapic. Eclipta control by coapplication of imazapic and diclosulam exceeded control by imazapic alone. The fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole did not affect yellow nutsedge control by imazapic.}, number={1}, journal={WEED TECHNOLOGY}, author={Jordan, David L. and Lancaster, Sarah H. and Lanier, James E. and Lassiter, Bridget R. and Johnson, P. Dewayne}, year={2009}, pages={6–10} } @article{lancaster_beam_lanier_jordan_johnson_2007, title={Compatibility of diclosulam with postemergence herbicides and fungicides}, volume={21}, ISSN={["0890-037X"]}, DOI={10.1614/WT-07-028.1}, abstractNote={Diclosulam is registered for residual and postemergence control of several broadleaf weeds and suppression of annual sedges in peanut in the southeastern United States. Many producers apply herbicides and other pesticides simultaneously to increase the spectrum of pest control or to increase efficiency of operations. However, compatibility of coapplication of pesticides is a concern. Field trials were conducted to evaluate the compatibility of diclosulam with other herbicides and fungicides. Horseweed control by diclosulam in combination with glyphosate, sulfosate, or paraquat was compared to combinations of these herbicides with flumioxazin, tribenuron plus thifensulfuron, or 2,4-D. All treatments that contained diclosulam controlled horseweed at least 86%. Broadleaf signalgrass control by clethodim and sethoxydim was not affected by diclosulam; however, large crabgrass control was reduced when graminicides were coapplied with diclosulam. Common ragweed control was reduced when diclosulam was applied with chlorothalonil and pyraclostrobin but not by azoxystrobin or tebuconazole.}, number={4}, journal={WEED TECHNOLOGY}, author={Lancaster, Sarah H. and Beam, Joshua B. and Lanier, James E. and Jordan, David L. and Johnson, P. Dewayne}, year={2007}, pages={869–872} } @article{lancaster_beam_lanier_jordan_johnson_2007, title={Weed and peanut (Arachis hypogaea) response to diclosularn applied POST}, volume={21}, ISSN={["0890-037X"]}, DOI={10.1614/WT-06-151.1}, abstractNote={Diclosulam is generally applied either PPI or PRE to peanut to control certain broadleaf weeds and suppress sedges. Research was conducted to determine efficacy and peanut response to POST applications of diclosulam at 9, 13, 18, and 27 g ai/ha. Efficacy of diclosulam was affected by application rate and environment. Common ragweed control ranged from 60 to 100%, entireleaf morningglory control from 56 to 100%, marestail control from 78 to 85%, and nodding spurge from 50 to 97%. Smooth pigweed and common lambsquarters were both controlled less than 35%. Diclosulam controlled yellow nutsedge and eclipta less than 70 and 80%, respectively. In separate experiments, diclosulam and imazapic controlled dogfennel more effectively than acifluorfen, bentazon, imazethapyr, lactofen, paraquat, or 2,4-DB. Visual estimates of peanut injury were 15% or less for all rates during both years. Peanut yield ranged from 3,340 to 3,730 kg/ha in 2002 and 5,230 to 5,820 kg/ha in 2003. Foliar injury and peanut pod yield were influenced by diclosulam rate, although no clear relation was evident. Cultivar and diclosulam rate did not interact with respect to visual injury or pod yield. Nomenclature: Acifluorfen, bentazon, diclosulam, imazapic, imazethapyr, lactofen, paraquat, 2,4-DB, common lambsquarters, Chenopodium album L. CHEAL, common ragweed, Ambrosia artemisiifolia L. AMBEL, dogfennel, Eupatorium capillifolium (Lam.) Small EUPCP, eclipta, Eclipta prostrata L. ECLAL, entireleaf morningglory, Ipomoea hederaceae var integriscula Gray IPOHG, marestail, Conyza canadensis (L.) Cronq. ERICA, nodding spurge, Chamaesyce nutans (Lag.) Small EPHNU, smooth pigweed, Amaranthus hybridus L. AMACH, yellow nutsedge, Cyperus esculentus L. #CYPES, peanut, Arachis hypogaea L. ‘NC-V 11’ ‘Perry’}, number={3}, journal={WEED TECHNOLOGY}, author={Lancaster, Sarah H. and Beam, Joshua B. and Lanier, James E. and Jordan, David L. and Johnson, P. Dewayne}, year={2007}, pages={618–622} } @article{lanier_jordan_spears_wells_johnson_2005, title={Peanut response to inoculation and nitrogen fertilizer}, volume={97}, number={1}, journal={Agronomy Journal}, author={Lanier, J. E. and Jordan, D. L. and Spears, J. F. and Wells, R. and Johnson, P. D.}, year={2005}, pages={79–84} } @article{lanier_jordan_barnes_matthews_grabow_griffin_bailey_johnson_spears_wells_2004, title={Disease management in overhead sprinkler and subsurface drip irrigation systems for peanut}, volume={96}, ISSN={["1435-0645"]}, DOI={10.2134/agronj2004.1058}, abstractNote={Experiments were conducted during 2001 and 2002 at one location in North Carolina to compare development of early leaf spot (Cercospora arachidicola Hori), pod yield, and market grade characteristics when peanut (Arachis hypogea L.) was grown under overhead sprinkler irrigation (OSI) and subsurface drip irrigation (SDI) and fungicides were not applied or applied biweekly or based on weather advisories. Incidence of early leaf spot was lower when peanut was grown under SDI compared with OSI when fungicides were not applied. Fewer fungicide applications were needed when applications were based on weather advisories rather than when applied biweekly. There was no difference in early leaf spot control or leaf defoliation resulting from disease when fungicides were applied regardless of irrigation system or fungicide application approach. Pod yield was higher in 2001 under SDI compared with OSI when fungicides were not applied; yield was similar in 2002. Disease severity was much higher in 2001 than in 2002 and most likely explains differences in pod yield between years. No difference in yield was noted when fungicides were applied, regardless of irrigation system. The percentage of extra large kernels (%ELK) was lower in 1 of 2 yr under SDI compared with OSI. There were no differences in percentages of fancy pods (%FP), sound splits (%SS), and other kernels (%OK) among irrigation systems and fungicide programs. In a separate experiment where fungicides were applied biweekly, pod yield, %FP, and %ELK were similar under SDI and OSI but greater than nonirrigated peanut. The %OK was lower when peanut was irrigated.}, number={4}, journal={AGRONOMY JOURNAL}, author={Lanier, JE and Jordan, DL and Barnes, JS and Matthews, J and Grabow, GL and Griffin, WJ and Bailey, JE and Johnson, PD and Spears, JF and Wells, R}, year={2004}, pages={1058–1065} } @article{lanier_jordan_spears_wells_johnson_barnes_hurt_brandenburg_bailey_2004, title={Peanut response to planting pattern, row spacing, and irrigation}, volume={96}, ISSN={["1435-0645"]}, DOI={10.2134/agronj2004.1066}, abstractNote={Experiments were conducted from 1999 through 2002 in North Carolina to compare interactions of planting pattern, plant population, and irrigation on peanut (Arachis hypogaea L.) pod yield and market grade characteristics. In additional experiments, pod yield and severity of tomato spotted wilt tospovirus associated with the cultivars NC‐V 11, NC 12C, VA 98R, and Perry were compared in single row (rows spaced 91 cm apart) and standard twin row (two rows spaced 18 cm apart on 91‐cm centers) planting patterns when peanut was dug and vines inverted on two digging dates spaced 10 to 16 d apart. In a third set of experiments, pod yield, market grade characteristics, and severity of tomato spotted wilt tospovirus were compared when the cultivars NC‐V 11 and Perry were planted in single row, standard twin row, and narrow twin row (two rows spaced 18 cm apart on 46‐cm centers) planting patterns. Peanut pod yield was higher in standard twin row planting patterns than when grown in single row planting patterns in some but not all experiments. Planting peanut in the narrow twin row pattern did not increase peanut pod yield over the standard twin row planting pattern. Less tomato spotted wilt was observed in standard or narrow twin row planting patterns compared with single row planting patterns. Planting peanut in single rows spaced 46 cm apart did not improve yield over peanut planted in single rows spaced 91 cm apart or the standard twin row planting pattern, regardless of irrigation treatment.}, number={4}, journal={AGRONOMY JOURNAL}, author={Lanier, JE and Jordan, DL and Spears, JF and Wells, R and Johnson, PD and Barnes, JS and Hurt, CA and Brandenburg, RL and Bailey, JE}, year={2004}, pages={1066–1072} }