@article{lavoie_rojas_khan_shim_2024, title={Charge Protection in Electret Air Filtration Nonwoven Materials}, volume={4}, ISSN={["2365-709X"]}, url={https://doi.org/10.1002/admt.202301670}, DOI={10.1002/admt.202301670}, abstractNote={Abstract}, journal={ADVANCED MATERIALS TECHNOLOGIES}, author={Lavoie, Joseph and Rojas, Orlando J. and Khan, Saad A. and Shim, Eunkyoung}, year={2024}, month={Apr} } @article{pham_linova_smith_brown_elhanafi_fan_lavoie_woodley_carbonell_2024, title={Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant}, volume={1718}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2024.464682}, abstractNote={A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83%. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 minute, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20% loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83% to approximately 92-95%.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Pham, Dan N. and Linova, Marina Y. and Smith, William K. and Brown, Hunter and Elhanafi, Driss and Fan, Jinxin and Lavoie, Joseph and Woodley, John M. and Carbonell, Ruben G.}, year={2024}, month={Mar} } @article{lavoie_fan_pourdeyhimi_boi_carbonell_2023, title={Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review}, volume={5}, ISSN={["1097-0290"]}, DOI={10.1002/bit.28457}, abstractNote={Abstract}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Lavoie, Joseph and Fan, Jinxin and Pourdeyhimi, Behnam and Boi, Cristiana and Carbonell, Ruben G.}, year={2023}, month={May} } @article{fan_boi_lemma_lavoie_carbonell_2021, title={Iminodiacetic Acid (IDA) Cation-Exchange Nonwoven Membranes for Efficient Capture of Antibodies and Antibody Fragments}, volume={11}, ISSN={["2077-0375"]}, DOI={10.3390/membranes11070530}, abstractNote={There is strong need to reduce the manufacturing costs and increase the downstream purification efficiency of high-value therapeutic monoclonal antibodies (mAbs). This paper explores the performance of a weak cation-exchange membrane based on the coupling of IDA to poly(butylene terephthalate) (PBT) nonwoven fabrics. Uniform and conformal layers of poly(glycidyl methacrylate) (GMA) were first grafted to the surface of the nonwovens. Then IDA was coupled to the polyGMA layers under optimized conditions, resulting in membranes with very high permeability and binding capacity. This resulted in IgG dynamic binding capacities at very short residence times (0.1–2.0 min) that are much higher than those achieved by the best cation-exchange resins. Similar results were obtained in the purification of a single-chain (scFv) antibody fragment. As is customary with membrane systems, the dynamic binding capacities did not change significantly over a wide range of residence times. Finally, the excellent separation efficiency and potential reusability of the membrane were confirmed by five consecutive cycles of mAb capture from its cell culture harvest. The present work provides significant evidence that this weak cation-exchange nonwoven fabric platform might be a suitable alternative to packed resin chromatography for low-cost, higher productivity manufacturing of therapeutic mAbs and antibody fragments.}, number={7}, journal={MEMBRANES}, author={Fan, Jinxin and Boi, Cristiana and Lemma, Solomon Mengistu and Lavoie, Joseph and Carbonell, Ruben G.}, year={2021}, month={Jul} } @article{lavoie_chu_lavoie_hetzler_williams_carbonell_menegatti_2021, title={Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents}, volume={257}, ISSN={["1873-3794"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85093930679&partnerID=MN8TOARS}, DOI={10.1016/j.seppur.2020.117890}, abstractNote={This work presents the removal of host cell proteins (HCPs) from a Chinese Hamster Ovary clarified cell culture fluid (CHO CCCF) containing a therapeutic monoclonal antibody (mAb) by weak partitioning chromatography (WPC). The chromatographic adsorbents were produced by functionalizing Toyopearl resin with HCP-binding tetrameric multipolar (4MP) or hexameric hydrophobic/cationic (6HP) peptides. The CCCF was loaded on columns packed with either 4MP-Toyopearl or 6HP-Toyopearl resin only, or a 4MP and 6HP resin mixture at different values of residence time (RT: 0.5, 1, 2, and 5 min). The temporal profiles of concentration of HCPs and mAb in the effluents confirmed the binding mechanism by WPC, where both HCPs and mAb are initially bound by the peptide ligands, but, as more CCCF is fed to the column, the incoming HCPs displace the bound mAbs. In particular, 4MP was shown to capture more selectively high molecular weight HCPs, while 6HP was more effective in binding low molecular weight HCPs. Under optimal loading conditions (~60–80 g of proteins per L of adsorbent; RT of 5 min), the 6HP+4MP-Toyopearl adsorbent provided mAb yield and purity of >80% and up to 90%, respectively. Conversely, the control resin Toyopearl SuperQ-650 M resulted in 70% yield and 75% purity under the same conditions. Proteomic analysis of the effluents demonstrated that 6HP+4MP-Toyopearl adsorbent removes HCPs known for their immunogenicity or IgG co-elution or degradation, demonstrating the potential of these peptide-based resins as HCP scrubbers in mAb purification processes.}, journal={SEPARATION AND PURIFICATION TECHNOLOGY}, author={Lavoie, R. Ashton and Chu, Wenning and Lavoie, Joseph H. and Hetzler, Zachary and Williams, Taufika Islam and Carbonell, Ruben and Menegatti, Stefano}, year={2021}, month={Feb} }