@article{hackman_cook_strahm_carter_woodley_garcia_albaugh_rubilar_campoe_2024, title={Pinus taeda carryover phosphorus availability on the lower Atlantic Coastal Plain}, volume={555}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2024.121701}, abstractNote={Phosphorus (P) fertilizer that remains in the soil after harvest and into the subsequent rotation is referred to as carryover P. Carryover P is not well understood in loblolly pine (P. taeda) silviculture, especially on highly P responsive sites, where this effect could potentially have the greatest benefit to land managers. Our study aims to determine the duration of the P carryover effect and the magnitude of response to soil P as it relates to previously applied P fertilizer rates from the previous rotation. To address this knowledge gap, we studied two highly weathered sites on the lower Atlantic coastal plain: a somewhat poorly drained Spodosol and a poorly drained Alfisol over three years from pre- to post-harvest. Two years post planting, carryover fertilizer treatments resulted in a 13% increase in height for the 121 kg P ha-1, a 15% for the 81 kg P ha-1, and a 17% increase for the fertilized 40 + 45 kg P ha-1 treatments compared to the control for the Alfisol. Spodosols appeared to respond to any additional fertilization compared to the control group regardless of rate. Importantly, we found that O horizon mass and P content from the first rotation, approximately seven years before harvest, exhibited a positive linear relationship with one-year-old heights in the Spodosol and one- and two-year-old heights in the Alfisol. These findings shed light on the importance of the O horizon characteristics and its potential as an indicator for tree growth in subsequent rotations.}, journal={FOREST ECOLOGY AND MANAGEMENT}, publisher={Elsevier BV}, author={Hackman, Jacob and Cook, Rachel and Strahm, Brian and Carter, David and Woodley, Alex and Garcia, Kevin and Albaugh, Timothy and Rubilar, Rafael and Campoe, Otavio}, year={2024}, month={Mar} } @article{hackman_woodley_carter_strahm_averill_vilgalys_garcia_cook_2024, title={Fungal biomass and ectomycorrhizal community assessment of phosphorus responsive Pinus taeda plantations}, volume={5}, ISSN={["2673-6128"]}, DOI={10.3389/ffunb.2024.1401427}, abstractNote={Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for Pinus taeda , it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with P. taeda and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive P. taeda under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing P. taeda in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.}, journal={FRONTIERS IN FUNGAL BIOLOGY}, author={Hackman, Jacob and Woodley, Alex and Carter, David and Strahm, Brian and Averill, Collin and Vilgalys, Rytas and Garcia, Kevin and Cook, Rachel}, year={2024}, month={May} } @article{hackman_cook_strahm_carter_woodley_garcia_2024, title={Using microdialysis to assess soil diffusive P and translocated sap flow P concentrations in Southern Pinus taeda plantations}, volume={1}, ISSN={["1573-5036"]}, DOI={10.1007/s11104-023-06468-8}, journal={PLANT AND SOIL}, author={Hackman, Jacob and Cook, Rachel and Strahm, Brian and Carter, David and Woodley, Alex and Garcia, Kevin}, year={2024}, month={Jan} } @article{hackman_ozyhar_chien_hilty_woodley_cook_2022, title={Evaluation of synthetic hydroxyapatite as a potential phosphorus fertilizer for application in Forest plantations}, volume={18}, ISSN={["2158-0715"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85136474133&partnerID=MN8TOARS}, DOI={10.1080/21580103.2022.2115149}, abstractNote={Abstract Synthetic hydroxyapatite (HA) was compared against triple superphosphate (TSP) and two unprocessed phosphate rocks (PR1, PR2) to (1) quantify and assess a synthetic lamellar structured-HA for its solubility and diffusiveness under acidic, sandy, soil conditions, (2) Evaluate synthetic lamellar structured-HA as a phosphorus early rotation fertilizer for Eucalyptus saplings. Soil incubation experiments verified that HA released more diffusive phosphorus into the soil than non-synthetic phosphate rock and had similar amounts of diffusive phosphorus as TSP. The solubility of HA at pH 3 and pH 6 was higher than that of raw ground phosphate rocks (apatites). Total dry-matter yield (DMY) and shoot-length of Eucalyptus seedlings grown for 154 days in acid soil (pH 4.9) were increased significantly by the application of HA compared to the control, PR2, and mixed (HA + PR2). The lack of a DMY response using TSP indicates that phosphorus may not have been the limiting factor. However, considering TSP and HA had similar solubilities and released diffusive phosphorus at similar levels, the only variable we failed to control for was the CaCO3 provided by the HA and not the TSP. Further experimentation is needed to confirm this hypothesis. Overall, HA is a promising candidate to supplement traditional phosphorus fertilizers for acidic sandy Eucalyptus silviculture.}, number={3}, journal={FOREST SCIENCE AND TECHNOLOGY}, author={Hackman, Jacob and Ozyhar, Tomasz and Chien, S. H. and Hilty, Florentine and Woodley, Alex and Cook, Rachel L.}, year={2022}, month={Jul}, pages={127–134} } @article{hackman_rose_frank_vilgalys_cook_garcia_2022, title={NPK fertilizer use in loblolly pine plantations: Who are we really feeding?}, volume={520}, ISSN={["1872-7042"]}, url={https://doi.org/10.1016/j.foreco.2022.120393}, DOI={10.1016/j.foreco.2022.120393}, abstractNote={Optimizing loblolly pine (Pinus taeda L.) productivity using fertilizers and various site management practices has been a goal of foresters for decades. Nitrogen (N), phosphorus (P), and potassium (K) are the three most operationally applied fertilizers to loblolly pine silviculture and are of primary importance to their total productivity. Fertilizer recommendations for N, P, and K in loblolly pine are primarily made on abiotic factors such as site and soil characteristics, while the biological factors controlling nutrient uptake are typically overlooked in the production and optimization of these stands. Arguably the most important of these biological factors are the diverse ectomycorrhizal fungal (ECM) communities that colonize the fine roots of almost all loblolly pine trees. The mantle formed by ECM fungi on short-root tips presents a barrier for direct apoplastic uptake of N, P, and K from soil solution by pine roots. In well-colonized roots, the tree is dependent on symplastic fungal transport of N, P, and K foraged from the soil by the extraradical hyphal network. This raises the question: Who are we really feeding if the ECM fungi are the ones assimilating most of the tree's total nutritional requirements? Considering multiple species of ECM fungi can inhabit a single root system, many questions remain regarding the drivers of colonization, why some species are more efficient at taking up and exchanging nutrients with their hosts than others, and why certain fertilizers directly affect the morphology of ECM growth. The purposes of this review are (1) to explore how the most commonly commercially applied macronutrients, N, P, and K, affect the relationship between loblolly pine and ECM communities, and (2) to propose future directions to investigate, preserve, and manipulate these interactions in pine plantations to optimize productivity.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Hackman, Jacob J. and Rose, Benjamin D. and Frank, Hannah E. R. and Vilgalys, Rytas and Cook, Rachel L. and Garcia, Kevin}, year={2022}, month={Sep} }