@misc{nozariasbmarz_collins_dsouza_polash_hosseini_hyland_liu_malhotra_ortiz_mohaddes_et al._2020, title={Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems}, volume={258}, ISSN={["1872-9118"]}, url={https://publons.com/publon/30967440/}, DOI={10.1016/j.apenergy.2019.114069}, abstractNote={Global demand for battery-free metrics and health monitoring devices has urged leading research agencies and their subordinate centers to set human energy harvesting and self-powered wearable technologies as one of their primary research objectives. After an overview of wearables market trends, different active and passive methods of body energy harvesting for powering low-consumption electronic devices are introduced, and challenges of device fabrication are discussed. The discussion continues with the primary emphasis on thermoelectric generators for body heat harvesting. The physiological aspects of the human body involved in heat generation are elaborated. System requirements and the influence of different parameters on the performance of thermoelectric generators are studied at the material, device, and system levels. Finally, the advancements in the development of rigid and flexible thermoelectric generators for wearable and textile integration are presented.}, journal={APPLIED ENERGY}, author={Nozariasbmarz, Amin and Collins, Henry and Dsouza, Kelvin and Polash, Mobarak Hossain and Hosseini, Mahshid and Hyland, Melissa and Liu, Jie and Malhotra, Abhishek and Ortiz, Francisco Matos and Mohaddes, Farzad and et al.}, year={2020}, month={Jan} } @misc{nozariasbmarz_agarwal_coutant_hall_liu_liu_malhotra_norouzzadeh_oeztuerk_ramesh_et al._2017, title={Thermoelectric silicides: A review}, volume={56}, ISSN={["1347-4065"]}, url={http://dx.doi.org/10.7567/jjap.56.05da04}, DOI={10.7567/jjap.56.05da04}, abstractNote={Traditional research on thermoelectric materials focused on improving the figure-of-merit zT to enhance the energy conversion efficiency. With further growth and commercialization of thermoelectric technology beyond niche applications, other factors such as materials availability, toxicity, cost, recyclability, thermal stability, chemical and mechanical properties, and ease of fabrication become important for making viable technologies. Several silicide alloys were identified that have the potential to fulfill these requirements. These materials are of interest due to their abundancy in earth’s crust (e.g., silicon), non-toxicity, and good physical and chemical properties. In this paper, an overview of the silicide thermoelectrics from traditional alloys to advanced material structures is presented. In addition, some of the most effective approaches as well as fundamental physical concepts for designing and developing efficient thermoelectric materials are presented and future perspectives are discussed.}, number={5}, journal={JAPANESE JOURNAL OF APPLIED PHYSICS}, author={Nozariasbmarz, Amin and Agarwal, Aditi and Coutant, Zachary A. and Hall, Michael J. and Liu, Jie and Liu, Runze and Malhotra, Abhishek and Norouzzadeh, Payam and Oeztuerk, Mehmet C. and Ramesh, Viswanath P. and et al.}, year={2017}, month={May} } @article{hyland_hunter_liu_veety_vashaee_2016, title={Wearable thermoelectric generators for human body heat harvesting}, volume={182}, ISSN={["1872-9118"]}, DOI={10.1016/j.apenergy.2016.08.150}, abstractNote={A thermoelectric generator (TEG) can be used to harvest electrical energy from human body heat for the purpose of powering wearable electronics. At the NSF Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), TEGs are one of the enabling technologies being explored to advance the center’s mission of creating wearable, self-powered, health and environmental monitoring systems. As part of this effort, an exploration of the relevant parameters for maximizing the wearable TEG power output from the body heat and maintaining the body comfort is particularly important. For this purpose, the heat from the body must be directed into TEG with minimal loss, the generator must be designed for maintaining a high temperature differential across the thermoelectric material, and the generator must have a small form factor to maintain the body comfort. In order to address these requirements, an optimum TEG design was developed and experiments were conducted both on a temperature-controlled hot plate and on different body locations including the wrist, upper arm, and chest. The TEG was further fabricated into a T-shirt and the power was recorded for different human activities. Comparison of the experiments on various body locations and on the T-shirt yielded the highest to lowest power generated on the upper arm, wrist, chest and T-shirt, respectively. The prospect of powering a wearable electrocardiogram sensor by a TEG on the upper arm is discussed.}, journal={APPLIED ENERGY}, author={Hyland, Melissa and Hunter, Haywood and Liu, Jie and Veety, Elena and Vashaee, Daryoosh}, year={2016}, month={Nov}, pages={518–524} }