@article{gilbertie_davis_davidson_mcdonald_schirmer_schnabel_2019, title={Oral reserpine administration in horses results in low plasma concentrations that alter platelet biology}, volume={51}, ISSN={["2042-3306"]}, DOI={10.1111/evj.13048}, abstractNote={Summary}, number={4}, journal={EQUINE VETERINARY JOURNAL}, author={Gilbertie, J. M. and Davis, J. L. and Davidson, G. S. and McDonald, A. M. and Schirmer, J. M. and Schnabel, L. V.}, year={2019}, month={Jul}, pages={537–543} } @article{martin_schirmer_jones_davis_2018, title={Pharmacokinetics and ex vivo anti‐inflammatory effects of oral misoprostol in horses}, volume={51}, ISSN={0425-1644 2042-3306}, url={http://dx.doi.org/10.1111/evj.13024}, DOI={10.1111/evj.13024}, abstractNote={Summary}, number={3}, journal={Equine Veterinary Journal}, publisher={Wiley}, author={Martin, E. M. and Schirmer, J. M. and Jones, S. L. and Davis, J. L.}, year={2018}, month={Oct}, pages={415–421} } @article{davis_schirmer_medlin_2018, title={Pharmacokinetics, pharmacodynamics and clinical use of trazodone and its active metabolite m-chlorophenylpiperazine in the horse}, volume={41}, ISSN={["1365-2885"]}, DOI={10.1111/jvp.12477}, abstractNote={Trazodone is a serotonin receptor antagonist and reuptake inhibitor used extensively as an anxiolytic in human and small animal veterinary medicine. The aims of this study were to determine the pharmacokinetics of oral trazodone in experimental horses and to evaluate the effect of oral trazodone in clinical horses. Six experimental horses were administered trazodone at 7.5 or 10 mg/kg. Plasma concentrations of trazodone and its metabolite (m‐CPP) were determined via UPLC‐MS/MS. Noncompartmental pharmacokinetic analysis, sedation and ataxia scores were determined. Trazodone was rapidly absorbed after oral administration with a maximum concentration of 2.5–4.1 μg/ml and half‐life of the terminal phase of approximately 7 hr. The metabolite was present at low levels in all horses, representing only 2.5% of the total area under the curve. In experimental horses, concentration‐dependent sedation and ataxia were noted, lasting up to 12 hr. For clinical cases, medical records of horses treated with trazodone for various abnormal behaviours were reviewed and data were summarized. Trazodone was successful in modifying behavioural problems to some degree in 17 of 18 clinical cases. Tolerance and subsequent lack of drug effect occurred in two of 18 clinical cases following 14 or 21 days of use. In both populations of horses, adverse effects attributed to trazodone include oversedation, muscle fasciculations and transient arrhythmias.}, number={3}, journal={JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS}, author={Davis, J. L. and Schirmer, J. and Medlin, E.}, year={2018}, month={Jun}, pages={393–401} } @article{davis_kruger_lafevers_barlow_schirmer_breuhaus_2014, title={Effects of quinapril on angiotensin converting enzyme and plasma renin activity as well as pharmacokinetic parameters of quinapril and its active metabolite, quinaprilat, after intravenous and oral administration to mature horses}, volume={46}, ISSN={["2042-3306"]}, DOI={10.1111/evj.12206}, abstractNote={Summary}, number={6}, journal={EQUINE VETERINARY JOURNAL}, author={Davis, J. L. and Kruger, K. and LaFevers, D. H. and Barlow, B. M. and Schirmer, J. M. and Breuhaus, B. A.}, year={2014}, month={Nov}, pages={729–733} } @article{holland_fogle_blikslager_curling_barlow_schirmer_davis_2014, title={Pharmacokinetics and pharmacodynamics of three formulations of firocoxib in healthy horses}, volume={38}, ISSN={0140-7783}, url={http://dx.doi.org/10.1111/jvp.12177}, DOI={10.1111/jvp.12177}, abstractNote={The objectives of this study were to compare the pharmacokinetics and COX selectivity of three commercially available formulations of firocoxib in the horse. Six healthy adult horses were administered a single dose of 57 mg intravenous, oral paste or oral tablet firocoxib in a three‐way, randomized, crossover design. Blood was collected at predetermined times for PGE2 and TXB2 concentrations, as well as plasma drug concentrations. Similar to other reports, firocoxib exhibited a long elimination half‐life (31.07 ± 10.64 h), a large volume of distribution (1.81 ± 0.59L/kg), and a slow clearance (42.61 ± 11.28 mL/h/kg). Comparison of the oral formulations revealed a higher Cmax, shorter Tmax, and greater AUC for the paste compared to the tablet. Bioavailability was 112% and 88% for the paste and tablet, respectively. Maximum inhibition of PGE2 was 83.76% for the I.V. formulation, 52.95% for the oral paste formulation, and 46.22% for the oral tablet formulation. Pharmacodynamic modeling suggests an IC50 of approximately 27 ng/mL and an IC80 of 108 ng/ mL for COX2 inhibition. Inhibition of TXB2 production was not detected. This study indicates a lack of bioequivalence between the oral formulations of firocoxib when administered as a single dose to healthy horses.}, number={3}, journal={Journal of Veterinary Pharmacology and Therapeutics}, publisher={Wiley}, author={Holland, B. and Fogle, C. and Blikslager, A. T. and Curling, A. and Barlow, B. M. and Schirmer, J. and Davis, J. L.}, year={2014}, month={Nov}, pages={249–256} }