James Kneller Froustey, J., Richers, S., Grohs, E., Flynn, S. D., Foucart, F., Kneller, J. P., & McLaughlin, G. C. (2024). Neutrino fast flavor oscillations with moments: Linear stability analysis and application to neutron star mergers. PHYSICAL REVIEW D, 109(4). https://doi.org/10.1103/PhysRevD.109.043046 Grohs, E., Richers, S., Couch, S. M., Foucart, F., Froustey, J., Kneller, J. P., & McLaughlin, G. C. (2024). Two-moment Neutrino Flavor Transformation with Applications to the Fast Flavor Instability in Neutron Star Mergers. ASTROPHYSICAL JOURNAL, 963(1). https://doi.org/10.3847/1538-4357/ad13f2 Grohs, E., Richers, S., Couch, S. M., Foucart, F., Kneller, J. P., & McLaughlin, G. C. (2023). Neutrino fast flavor instability in three dimensions for a neutron star merger. PHYSICS LETTERS B, 846. https://doi.org/10.1016/j.physletb.2023.138210 Baxter, A. L., BenZvi, S. Y., Bonivento, W., Brazier, A., Clark, M., Coleiro, A., … Xu, Y. (2022, July 27). Collaborative experience between scientific software projects using Agile Scrum development. SOFTWARE-PRACTICE & EXPERIENCE, Vol. 7. https://doi.org/10.1002/spe.3120 Baxter, A. L., BenZvi, S., Jaimes, J. C., Coleiro, A., Molla, M. C., Dornic, D., … Worlikar, A. (2022). SNEWPY: A Data Pipeline from Supernova Simulations to Neutrino Signals. ASTROPHYSICAL JOURNAL, 925(2). https://doi.org/10.3847/1538-4357/ac350f Al Kharusi, S., BenZvi, S. Y., Bobowski, J. S., Bonivento, W., Brdar, V., Brunner, T., … Xu, Y. (2021). [Review of SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy]. NEW JOURNAL OF PHYSICS, 23(3). https://doi.org/10.1088/1367-2630/abde33 Stapleford, C. J., Froehlich, C., & Kneller, J. P. (2020). Coupling neutrino oscillations and simulations of core-collapse supernovae. PHYSICAL REVIEW D, 102(8). https://doi.org/10.1103/PhysRevD.102.081301 IsotropicSQA. (2019, February 21). Zenodo. https://doi.org/10.5281/zenodo.2574231 IsotropicSQA. (2019, February 21). Zenodo. https://doi.org/10.5281/zenodo.2574232 IsotropicSQA. (2019, February 21). Zenodo. https://doi.org/10.5281/zenodo.3236833 Neutrino Quantum Kinetics in Compact Objects [Data set]. (2019). Zenodo. https://doi.org/10.5281/zenodo.2574228 Neutrino Quantum Kinetics in Compact Objects [Data set]. (2019). Zenodo. https://doi.org/10.5281/zenodo.2574227 Neutrino Quantum Kinetics in Compact Objects [Data set]. (2019). Zenodo. https://doi.org/10.5281/zenodo.3237245 Richers, S. A., McLaughlin, G. C., Kneller, J. P., & Vlasenko, A. (2019). Neutrino quantum kinetics in compact objects. PHYSICAL REVIEW D, 99(12). https://doi.org/10.1103/PhysRevD.99.123014 Neutrinos from Pair Instability Supernovae. (2019). Springer Proceedings in Physics, 219, 151–155. https://doi.org/10.1007/978-3-030-13876-9_25 Wright, W. P., & Kneller, J. P. (2018). Feasibility of using neutrino intensity interferometry to measure protoneutron star radii. PHYSICAL REVIEW D, 98(4). https://doi.org/10.1103/PhysRevD.98.043016 Kneller, J. P. (2018). Neutrino flavor transformation in supernova as a probe for nonstandard neutrino-scalar interactions. Proceedings of Science, 341. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85079340911&partnerID=MN8TOARS Yang, Y., & Kneller, J. P. (2018). Neutrino flavor transformation in supernovae as a probe for nonstandard neutrino-scalar interactions. PHYSICAL REVIEW D, 97(10). https://doi.org/10.1103/physrevd.97.103018 Yang, Y., & Kneller, J. P. (2018). Neutrino flavour evolution through fluctuating matter. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 45(4). https://doi.org/10.1088/1361-6471/aab0c4 Horiuchi, S., & Kneller, J. P. (2018). What can be learned from a future supernova neutrino detection? Journal of Physics G: Nuclear and Particle Physics, 45(4). https://doi.org/10.1088/1361-6471/aaa90a Horiuchi, S., & Kneller, J. P. (2018). [Review of What can be learned from a future supernova neutrino detection?]. Journal of Physics. G, Nuclear and Particle Physics, 45(4). Yang, Y., & Kneller, J. P. (2017). GR effects in supernova neutrino flavor transformations. PHYSICAL REVIEW D, 96(2). https://doi.org/10.1103/physrevd.96.023009 Wright, W. P., & Kneller, J. P. (2017). Neutrino Intensity Interferometry: Measuring Protoneutron Star Radii During Core-Collapse Supernovae. PHYSICAL REVIEW LETTERS, 119(5). https://doi.org/10.1103/physrevlett.119.051101 Wright, W. P., Gilmer, M. S., Frohlich, C., & Kneller, J. P. (2017). Neutrino signal from pair-instability supernovae. PHYSICAL REVIEW D, 96(10). https://doi.org/10.1103/physrevd.96.103008 Wright, W. P., Kneller, J. P., Ohlmann, S. T., Roepke, F. K., Scholberg, K., & Seitenzahl, I. R. (2017). Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario. PHYSICAL REVIEW D, 95(4). https://doi.org/10.1103/physrevd.95.043006 Kneller, J. P., & De Los Reyes, M. (2017). The effect of core-collapse supernova accretion phase turbulence on neutrino flavor evolution. Journal of Physics G: Nuclear and Particle Physics, 44(8). https://doi.org/10.1088/1361-6471/aa7bc8 Kneller, J. P., & Reyes, M. (2017). The effect of core-collapse supernova accretion phase turbulence on neutrino flavor evolution. Journal of Physics. G, Nuclear and Particle Physics, 44(8). Wright, W. P., Nagaraj, G., Kneller, J. P., Scholberg, K., & Seitenzahl, I. R. (2016). Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario. PHYSICAL REVIEW D, 94(2). https://doi.org/10.1103/physrevd.94.025026 Stapleford, C. J., Vaananen, D. J., Kneller, J. P., McLaughlin, G. C., & Shapiro, B. T. (2016). Nonstandard neutrino interactions in supernovae. PHYSICAL REVIEW D, 94(9). https://doi.org/10.1103/physrevd.94.093007 Supernova Physics at DUNE. (2016, August 28). Malkus, A., Kneller, J. P., McLaughlin, G. C., & Surman, R. (2015). Neutrino Oscillation Above a Black Hole Accretion Disk. NUINT12: 8TH INTERNATIONAL WORKSHOP ON NEUTRINO-NUCLEUS INTERACTIONS IN THE FEW-GEV REGION, Vol. 1663. https://doi.org/10.1063/1.4919479 Lund, T., & Kneller, J. P. (2015). Neutrino flavor evolution in turbulent supernova matter. 13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, Vol. 61, pp. 729–736. https://doi.org/10.1016/j.phpro.2014.12.090 Kneller, J. P., & Kabadi, N. V. (2015). Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics. PHYSICAL REVIEW D, 92(1). https://doi.org/10.1103/physrevd.92.013009 Patton, K. M., Kneller, J. P., & McLaughlin, G. C. (2015). Stimulated neutrino transformation through turbulence on a changing density profile and application to supernovae. PHYSICAL REVIEW D, 91(2). https://doi.org/10.1103/physrevd.91.025001 The Physics Of Supernova Neutrino Oscillations. (2015, July 6). Lund, T., & Kneller, J. P. (2014). Flavor evolution of supernova neutrinos in turbulent matter. 1604, 225–232. https://doi.org/10.1063/1.4883435 Patton, K. M., Kneller, J. P., & McLaughlin, G. C. (2014). Stimulated neutrino transformation through turbulence. PHYSICAL REVIEW D, 89(7). https://doi.org/10.1103/physrevd.89.073022 Kneller, J. P., McLaughlin, G. C., & Patton, K. M. (2014). Turbulence and its effects upon neutrinos. WORKSHOP ON DARK MATTER, NEUTRINO PHYSICS AND ASTROPHYSICS CETUP 2013: VIITH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY PPC 2013, Vol. 1604, pp. 204–209. https://doi.org/10.1063/1.4883432 Lund, T., & Kneller, J. P. (2013). Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution. PHYSICAL REVIEW D, 88(2). https://doi.org/10.1103/physrevd.88.023008 Kneller, J. P., & Mauney, A. W. (2013). Consequences of large theta(13) for the turbulence signatures in supernova neutrinos. PHYSICAL REVIEW D, 88(2). https://doi.org/10.1103/physrevd.88.025004 Kneller, J. P., & Mauney, A. W. (2013). Does the finite size of the proto-neutron star preclude supernova neutrino flavor scintillation due to turbulence? PHYSICAL REVIEW D, 88(4). https://doi.org/10.1103/physrevd.88.045020 Kneller, J. P., McLaughlin, G. C., & Patton, K. M. (2013). Stimulated neutrino transformation in supernovae. 11TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2012), Vol. 1560, pp. 176–178. https://doi.org/10.1063/1.4826746 Kneller, J. P., McLaughlin, G. C., & Patton, K. M. (2013). Stimulated neutrino transformation with sinusoidal density profiles. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 40(5). https://doi.org/10.1088/0954-3899/40/5/055002 Lund, T., & Kneller, J. P. (2013). v propagation in turbulent supernova matter. 11th conference on the intersections of particle and nuclear physics (cipanp 2012), 1560, 333–335. Malkus, A., Kneller, J. P., McLaughlin, G. C., & Surman, R. (2013). vs and nucleosynthesis from accretion disks. 11TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2012), Vol. 1560, pp. 336–340. https://doi.org/10.1063/1.4826787 Lund, T., & Kneller, J. P. (2013). ν propagation in turbulent supernova matter. 1560, 333–335. https://doi.org/10.1063/1.4826786 Fundamental Physics at the Intensity Frontier. (2012, May 11). Malkus, A., Kneller, J. P., McLaughlin, G. C., & Surman, R. (2012). Neutrino oscillations above black hole accretion disks: Disks with electron-flavor emission. PHYSICAL REVIEW D, 86(8). https://doi.org/10.1103/physrevd.86.085015 Galais, S., Kneller, J., & Volpe, C. (2012). The neutrino–neutrino interaction effects in supernovae: the point of view from the ‘matter’ basis. Journal of Physics G: Nuclear and Particle Physics, 39(3). https://doi.org/10.1088/0954-3899/39/3/035201 The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups. (2011, October 27). Kneller, J. P. (2011). The effect of turbulence upon supernova neutrinos. Nuclear Physics B - Proceedings Supplements, 217(1), 118–120. https://doi.org/10.1016/j.nuclphysbps.2011.04.080 Kneller, J. P. (2011). The effect of turbulence upon supernova neutrinos. Nuclear Physics. B, Proceedings, Supplements, 217, 118–120. Kneller, J. P. (2011). Turbulence and supernova neutrinos. Proceedings of the Hamburg Neutrinos from Supernova Explosions, HAvSE 2011, 84–89. https://doi.org/10.3204/DESY-PROC-2011-03/kneller Galais, S., Kneller, J., Volpe, C., & Gava, J. (2010). Shock waves in supernovae: New implications on the diffuse supernova neutrino background. Physical Review D, 81(5). https://doi.org/10.1103/physrevd.81.053002 Kneller, J., & Volpe, C. (2010). Turbulence effects on supernova neutrinos. Physical Review D, 82(12). https://doi.org/10.1103/physrevd.82.123004 Gava, J., Kneller, J., Volpe, C., & McLaughlin, G. C. (2009). Dynamical Collective Calculation of Supernova Neutrino Signals. PHYSICAL REVIEW LETTERS, 103(7). https://doi.org/10.1103/physrevlett.103.071101 Duan, H., & Kneller, J. P. (2009). Neutrino flavour transformation in supernovae. Journal of Physics G: Nuclear and Particle Physics, 36(11). https://doi.org/10.1088/0954-3899/36/11/113201 Kneller, J. P., & McLaughlin, G. C. (2009). Three flavor neutrino oscillations in matter: Flavor diagonal potentials, the adiabatic basis, and the CP phase. PHYSICAL REVIEW D, 80(5). https://doi.org/10.1103/physrevd.80.053002 Kneller, J. P., McLaughlin, G. C., & Brockman, J. (2008). Oscillation effects and time variation of the supernova neutrino signal. PHYSICAL REVIEW D, 77(4). https://doi.org/10.1103/physrevd.77.045023 Kneller, J. P., & McLaughlin, G. C. (2006). Monte Carlo neutrino oscillations. PHYSICAL REVIEW D, 73(5). https://doi.org/10.1103/physrevd.73.056003 Kneller, J. P., McLaughlin, G. C., & Surman, R. A. (2006). Neutrino scattering, absorption and annihilation above the accretion discs of gamma ray bursts. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 32(4), 443–462. https://doi.org/10.1088/0954-3899/32/4/004 Kneller, J. P. (2005, January). Measuring the amount of dark radiation with the CMB and BBN. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, Vol. 138, pp. 73–75. https://doi.org/10.1016/j.nuclphysbps.2004.11.017 Kneller, J., & Steigman, G. (2004). BBN for pedestrians. New Journal of Physics, 6(2004), 1–22. https://doi.org/10.1088/1367-2630/6/1/117 Kneller, J. P., & Steigman, G. (2004). BBN for pedestrians. New Journal of Physics, 6(2004). Kneller, J. P., & McLaughlin, G. C. (2004). Effect of bound dineutrons upon big bang nucleosynthesis. PHYSICAL REVIEW D, 70(4). https://doi.org/10.1103/physrevd.70.043512 Kneller, J., & Steigman, G. (2003). Big bang nucleosynthesis and CMB constraints on dark energy. Physical Review D, 67(6), 063501–063501. https://doi.org/10.1103/physrevd.67.063501 Kneller, J. P., & Steigman, G. (2003). Big bang nucleosynthesis and CMB constraints on dark energy. Physical Review. D, Particles and Fields, 67(6), 063501–063501. Kneller, J. P., & McLaughlin, G. C. (2003). Big bang nucleosynthesis and Lambda(QCD). PHYSICAL REVIEW D, 68(10). https://doi.org/10.1103/physrevd.68.103508 Barger, V., Kneller, J., Lee, H.-S., Marfatia, D., & Steigman, G. (2003). Effective number of neutrinos and baryon asymmetry from BBN and WMAP. Physics Letters B, 566(1-2), 8–18. https://doi.org/10.1016/s0370-2693(03)00800-1 Barger, V., Kneller, J. P., Lee, H. S., Marfatia, D., & Steigman, G. (2003). Effective number of neutrinos and baryon asymmetry from BBN and WMAP. Physics Letters. B, 566(02-Jan), 18-. Barger, V., Kneller, J. P., Langacker, P., Marfatia, D., & Steigman, G. (2003). Hiding relativistic degrees of freedom in the early universe. PHYSICS LETTERS B, 569(3-4), 123–128. https://doi.org/10.1016/j.physletb.2003.07.039 Kneller, J. P., & Strigari, L. E. (2003). Inverse power law quintessence with nontracking initial conditions. PHYSICAL REVIEW D, 68(8). https://doi.org/10.1103/physrevd.68.083517 Kneller, J. P., Phillips, J. R., & Walker, T. P. (2003). Testing Two Nuclear Physics Approximations Used in the Standard Leaky‐Box Model for the Spallogenic Production of LiBeB. The Astrophysical Journal, 589(1 I), 217–224. https://doi.org/10.1086/374592 Steigman, G., Kneller, J. P., & Zentner, A. (2002). CMB (and other) challenges to BBN. Revista Mexicana de Astronomia y Astrofisica: Serie de Conferencias, 12, 265–271. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0347377313&partnerID=MN8TOARS Kneller, J. P., Steigman, G., & Walker, T. P. (2001). How does the cosmic microwave background plus big bang nucleosynthesis constrain new physics? Physical Review D, 64(12), 6. https://doi.org/10.1103/physrevd.64.123506 Kneller, J. P., Scherrer, R. J., Steigman, G., & Walker, T. P. (2001). How does the cosmic microwave background plus big bang nucleosynthesis constrain new physics? Physical Review D, 64(12). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0035893714&partnerID=MN8TOARS