@article{yuzuak_ballington_li_xie_2024, title={High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Tandem Mass Spectrometry-Based Profiling Reveals Anthocyanin Profile Alterations in Berries of Hybrid Muscadine Variety FLH 13-11 in Two Continuous Cropping Seasons}, volume={14}, ISSN={["2073-4395"]}, url={https://doi.org/10.3390/agronomy14030442}, DOI={10.3390/agronomy14030442}, abstractNote={FLH 13-11 is an F1 interspecific hybrid muscadine grape genotype that was developed to produce new anthocyanins for pigment color stability. This hybrid resulted from a cross between ‘Marsh’ (Vitis munsoniana) and ‘Magoon’ (V. rotundifolia) and has been cultivated for the wine and juice industry. This report characterizes anthocyanins produced in fully ripe berries and reveals a significant difference in total anthocyanin contents from two continuous cropping seasons. High-performance liquid chromatography with a diode array detector (HPLC-DAD) and HPLC–quadrupole time-of-flight tandem mass spectrometry (HPLC-qTOF-MS/MS) were used to profile anthocyanins in berries. The resulting data showed that fourteen anthocyanins were detected, six from 2011 and nine from 2012, with only one produced in both seasons. However, the anthocyanidin profiles of the berries were the same. Five anthocyanins were annotated as diglucosides of anthocyanidins based on MS/MS features, including delphinidin 3,5-diglucoside produced in both seasons, cyanidin 3,5-diglucoside mainly formed in 2011, petunidin 3,5-diglucoside, malvidin 3,5-diglucoside, and peonidin 3,5-glucoside only detected in 2012. Also, three anthocyanidin-diglucoside-like anthocyanins and three monoglucosides, including peonidin 3-glucoside, delphinidin 3-glucoside like, and pelargonidin 3-glucoside-like anthocyanins, were detected in 2011 and 2012, respectively. These results indicate that FLH 13-11 can produce both anthocyanidin-diglucosides and -monoglucosides, and their biosynthesis is closely dependent on cropping years.}, number={3}, journal={AGRONOMY-BASEL}, author={Yuzuak, Seyit and Ballington, James and Li, Gui and Xie, De-Yu}, year={2024}, month={Mar} } @article{redpath_aryal_lynch_spencer_hulse-kemp_ballington_green_bassil_hummer_ranney_et al._2022, title={Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids}, volume={297}, ISSN={["1879-1018"]}, DOI={10.1016/j.scienta.2022.110955}, abstractNote={Breeding strategies for improving blueberry (Vaccinium corymbosum and V. virgatum) cultivars often include introgressing regionally adapted species into the cultivated gene pools through interspecific hybridization. However, these approaches are complicated by variation in ploidy, triploid blocks and infertility, production of unreduced gametes, and aneuploidy. The objective of this study was to use flow cytometry, k-mer distribution analysis, and known pedigree information to evaluate genome sizes (2C nuclear and 1Cx monoploid), and ploidy of diverse accessions from Vaccinium sections and species. A total of 369 accessions, including a diversity panel (DP) of 251 inter- and intra-specific hybrid Vaccinium accessions, as well as 118 non-hybrid Vaccinium species across multiple sections, were sampled from the North Carolina State University blueberry breeding program and the National Clonal Germplasm Repository. The nuclear DNA content was analyzed via flow cytometry. The mean (range) DNA content of diploid, tetraploid, and hexaploid reference species were 1.20 pg (0.99 pg in V. crassifolium 'Well's Delight' to 1.41 pg in V. caesariense NC79–24), 2.37 pg (2.11 pg in V. corymbosum 'Concord' to 3.01 pg in V. corymbosum DE599), and 3.64 pg (3.24 in V. constablaei NC83–21–2 to 3.80 in V. virgatum 'Premier' and NC4790), respectively. Of the 369 unique accessions analyzed for ploidy, 259 were tetraploid, 46 were diploid, one was triploid, 51 were pentaploid or aneuploid with 2C values between tetraploid and hexaploid values, and 12 were hexaploid. Tetraploid hybrid pedigrees, which involved hexaploid crosses within three prior generations, had a 2C value range between 2.22 pg and 2.59 pg. Interspecific pentaploid and aneuploid progeny 2C DNA content ranged from 2.61 pg to 3.15 pg. We speculate some of these progeny to be near tetraploids with extra chromosomes from hexaploid progenitors. Further karyotyping of these individuals is necessary to ascertain aneuploidy anomalies. This research provides an expanded knowledge base of genome sizes, ploidy, and reproductive pathways for diverse species and hybrids to enhance future breeding, improvement, and the genomic study of blueberry.}, journal={SCIENTIA HORTICULTURAE}, author={Redpath, Lauren E. and Aryal, Rishi and Lynch, Nathan and Spencer, Jessica A. and Hulse-Kemp, Amanda M. and Ballington, James R. and Green, Jaimie and Bassil, Nahla and Hummer, Kim and Ranney, Thomas and et al.}, year={2022}, month={Apr} } @article{redpath_gumpertz_ballington_bassil_ashrafi_2021, title={Genotype, Environment, Year, and Harvest Effects on Fruit Quality Traits of Five Blueberry (Vaccinium corymbosum L.) Cultivars}, volume={11}, ISSN={["2073-4395"]}, url={https://doi.org/10.3390/agronomy11091788}, DOI={10.3390/agronomy11091788}, abstractNote={Blueberries (Vaccinium spp.) comprise a broad range of perennial woody species. Introgression of native species into cultivated germplasm has adapted Vaccinium germplasm to a range of climates and growing conditions for cultivated blueberry. Genetic differences signify phenotypic variance that is observed among blueberry accessions. In addition, variability in geographic and climatic growing conditions between environments or within the same environment across different years may further affect fruit and plant phenotypic expression. As a result, a phenotype is a function of genetic background (G), environment (E), and their interaction (G × E). In addition, other temporally regulated factors such as year (Y) and harvest time (H) impact plant and fruit quality phenotypic variation. Our research aimed to assess the genotypic performance of five blueberry cultivars, including ‘Echota’, ‘O’Neal’, ‘Reveille’, ‘Summit’, and ‘Sunrise’. The selected cultivars were phenotyped for various fruit quality-related traits over two sequential harvests in two years and two locations. Our results indicated that genotype was a significant source of variation for most phenotypic characteristics. Further, the effect of Y × H and G × Y × H significantly affected the majority of studied phenotypic traits. Within the studied genotypes, ‘Reveille’ and ‘O’Neal’ phenotypic stability were consistent across locations and years; additionally, ‘Summit’ phenotypic characteristics were stable across years, environments, and harvests. Clonal plant replicates within a genotype, harvest, and environment, in addition to individual fruit measures, were the most significant sources of variability.}, number={9}, journal={AGRONOMY-BASEL}, author={Redpath, Lauren E. and Gumpertz, Marcia and Ballington, James R. and Bassil, Nahla and Ashrafi, Hamid}, year={2021}, month={Sep} } @article{mengist_bostan_young_kay_gillitt_ballington_kay_ferruzzi_ashrafi_lila_et al._2021, title={High-density linkage map construction and identification of loci regulating fruit quality traits in blueberry}, volume={8}, ISSN={["2052-7276"]}, url={https://doi.org/10.1038/s41438-021-00605-z}, DOI={10.1038/s41438-021-00605-z}, abstractNote={AbstractFruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosumL). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1individuals derived from a cross between two southern highbush blueberry cultivars, ‘Reveille’ and ‘Arlen’, were phenotyped over three years (2016–2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8–13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.}, number={1}, journal={HORTICULTURE RESEARCH}, author={Mengist, Molla F. and Bostan, Hamed and Young, Elisheba and Kay, Kristine L. and Gillitt, Nicholas and Ballington, James and Kay, Colin D. and Ferruzzi, Mario G. and Ashrafi, Hamid and Lila, Mary Ann and et al.}, year={2021}, month={Dec} } @article{rowland_ogden_ballington_2021, title={Relationships among blueberry species within the section Cyanococcus of the Vaccinium genus based on EST-PCR markers}, ISSN={["1918-1833"]}, DOI={10.1139/cjps-2021-0221}, abstractNote={ Commercial blueberry species of North America belong to the Vaccinium genus, section Cyanococcus. Phylogenetic relationships of 50 accessions of different ploidy levels within Cyanococcus were investigated using 249 expressed sequence tag-polymerase chain reaction markers and standard clustering methods. Of the commercial species, tetraploid V. corymbosum grouped most closely with the diploids, V. fuscatum and V. caesariense, followed by the diploid V. elliottii. Tetraploid V. angustifolium grouped with the diploids, V. boreale and V. myrtilloides. Hexaploid V. virgatum grouped most closely with the diploid V. tenellum, thus shedding light on the origins of these polyploid species. }, journal={CANADIAN JOURNAL OF PLANT SCIENCE}, author={Rowland, Lisa J. and Ogden, Elizabeth L. and Ballington, James R.}, year={2021}, month={Dec} }