James Ryan Crosby

College of Engineering

Works (13)

Updated: August 29th, 2023 05:00

2023 article

Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10)

Bing, R. G. G., Willard, D. J. J., Manesh, M. J. H., Laemthong, T., Crosby, J. R. R., Adams, M. W. W., & Kelly, R. M. M. (2023, February 1). MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 2.

By: R. Bing n, D. Willard n, M. Manesh n, T. Laemthong n, J. Crosby n, M. Adams*, R. Kelly n

TL;DR: The genome sequences of three extremely thermophilic, lignocellulolytic Caldicellulosiruptor species were closed, improving previously reported multiple-contig assemblies and enhancing bioinformatic analysis of the species. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: February 20, 2023

2023 journal article

Complete Genome Sequences of Two Thermophilic Indigenous Bacteria Isolated from Wheat Straw, Thermoclostridium stercorarium subsp. Strain RKWS1 and Thermoanaerobacter sp. Strain RKWS2

MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 12(3).

By: R. Bing n, D. Willard n, M. Manesh n, T. Laemthong n, J. Crosby n, M. Adams*, R. Kelly n

TL;DR: Discovery of indigenous thermophiles in plant biomass suggests that high-temperature microorganisms are more ubiquitous than previously thought. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: April 17, 2023

2023 journal article

Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii

EXTREMOPHILES, 27(1).

author keywords: Caldicellulosiruptor; Extreme thermophile; Lignocellulose; Binding proteins; Tapirins
MeSH headings : Cellulose / metabolism; Biomass; Saccharum / metabolism; Caldicellulosiruptor / metabolism; Clostridiales / metabolism; Plants; Archaea / metabolism
TL;DR: Results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: March 13, 2023

2023 journal article

Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype

FRONTIERS IN MICROBIOLOGY, 14.

By: R. Bing n, D. Willard n, J. Crosby n, M. Adams* & R. Kelly n

author keywords: Caldicellulosiruptor; Thermoanaerobacterales; bacteria; thermophiles; phylogeny; ecology; fermentative anaerobes
TL;DR: A main outcome of ANI/AAI analysis indicates the need to reclassify several previously designated species in the Thermoanaerobacterales and Caldicellulosiruptorales by condensing them into strains of single species. (via Semantic Scholar)
UN Sustainable Development Goal Categories
14. Life Below Water (OpenAlex)
Sources: Web Of Science, NC State University Libraries
Added: August 28, 2023

2022 article

Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization

Crosby, J. R., Laemthong, T., Bing, R. G., Zhang, K., Tanwee, T. N. N., Lipscomb, G. L., … Kelly, R. M. (2022, October 11). APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 10.

author keywords: Caldicellulosiruptor; extreme thermophile; hemicellulose; xylanases; hemicellulase
MeSH headings : Regulon; Xylans; Cellulose / metabolism; Clostridiales / metabolism; Sugars
TL;DR: Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. (via Semantic Scholar)
UN Sustainable Development Goal Categories
Sources: Web Of Science, NC State University Libraries
Added: October 24, 2022

2022 article

Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization

Laemthong, T., Bing, R. G., Crosby, J. R., Adams, M. W. W., & Kelly, R. M. (2022, September 28). APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 9.

By: T. Laemthong n, R. Bing n, J. Crosby n, M. Adams* & R. Kelly n

author keywords: Caldicellulosiruptor; lignocellulose; glycoside hydrolase; surface layer homology (SLH) domain; plant biomass degradation; surface layer homology domain
MeSH headings : Glycoside Hydrolases / metabolism; Biomass; Xylans / metabolism; Xylose; Clostridiales / metabolism; Cellulose / metabolism; Plants / microbiology; Populus
UN Sustainable Development Goal Categories
Sources: Web Of Science, NC State University Libraries
Added: October 11, 2022

2022 journal article

Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth

BIORESOURCE TECHNOLOGY, 367.

By: R. Bing n, M. Carey n, T. Laemthong n, D. Willard n, J. Crosby n, D. Sulis n, J. Wang n, M. Adams*, R. Kelly n

author keywords: Thermophiles; Lignocellulose; Consolidated bioprocessing; Caldicellulosiruptor bescii; Acetivibrio thermocellus
MeSH headings : Biomass; Fermentation; Lignin / chemistry; Clostridium thermocellum / metabolism; Plants / metabolism
TL;DR: Thermophiles that naturally grow at and above 75°C offer specific advantages as platform microorganisms for biomass conversion into fuels and chemicals that prevents native microbes from competing with engineered microbes and forming undesirable by-products. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: January 17, 2023

2021 journal article

Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production

MSystems, 6(3).

By: D. Rodionov*, I. Rodionova, V. Rodionov, A. Arzamasov, K. Zhang*, G. Rubinstein*, T. Tanwee*, R. Bing n ...

Ed(s): Z. Summers

author keywords: Caldicellulosiruptor bescii; lignocellulose degradation; carbohydrate; Caldicellulosiruptor; carbohydrate utilization; comparative genomics; metabolic reconstruction; plant biomass degradation; regulon
TL;DR: The C. bescii model provides a useful platform for investigating the potential redox controls that mediate the carbon and energy flows in metabolism and sets the stage for future design of engineering strategies aiming at optimizing the production of ethanol and other bio-based chemicals. (via Semantic Scholar)
Sources: Web Of Science, Crossref, NC State University Libraries
Added: July 14, 2021

2019 journal article

Extreme thermophiles as emerging metabolic engineering platforms

Current Opinion in Biotechnology, 59, 55–64.

By: J. Crosby n, T. Laemthong n, A. Lewis n, C. Straub n, M. Adams* & R. Kelly n

MeSH headings : Archaea; Biotechnology; Genetic Engineering; Metabolic Engineering; Waste Products
TL;DR: If non-model platforms are successfully deployed, new avenues for production of fuels and chemicals from renewable feedstocks or waste materials will emerge. (via Semantic Scholar)
Sources: Web Of Science, Crossref, NC State University Libraries
Added: November 25, 2019

2019 article

The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'

Lee, L. L., Crosby, J. R., Rubinstein, G. M., Laemthong, T., Bing, R. G., Straub, C. T., … Kelly, R. M. (2020, January). EXTREMOPHILES, Vol. 24, pp. 1–15.

By: L. Lee n, J. Crosby n, G. Rubinstein*, T. Laemthong n, R. Bing n, C. Straub n, M. Adams*, R. Kelly n

author keywords: Caldicellulosiruptor; Extreme thermophiles; Lignocellulose
MeSH headings : Biomass; Biotechnology; Clostridiales; Glycoside Hydrolases; Hot Springs
TL;DR: Improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of Caldicellulosiruptor organisms. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: February 27, 2020

2018 review

Biotechnology of extremely thermophilic archaea

[Review of ]. FEMS MICROBIOLOGY REVIEWS, 42(5), 543–578.

By: C. Straub n, J. Counts n, D. Nguyen*, C. Wu*, B. Zeldes n, J. Crosby n, J. Conway n, J. Otten n ...

author keywords: extremely thermophilic archaea; biotechnology; biocatalysis; biooxidation
MeSH headings : Archaea / genetics; Archaea / physiology; Biotechnology / trends; Hot Temperature; Industrial Microbiology / trends; Metabolic Engineering / trends
TL;DR: There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures. (via Semantic Scholar)
UN Sustainable Development Goal Categories
15. Life on Land (Web of Science)
Sources: Web Of Science, NC State University Libraries
Added: November 19, 2018

2018 journal article

Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species

AICHE JOURNAL, 64(12), 4218–4228.

By: J. Conway n, J. Crosby n, A. Hren n, R. Southerland n, L. Lee n, V. Lunin*, P. Alahuhta*, M. Himmel* ...

author keywords: Caldicellulosiruptor; lignocellulose; glycoside hydrolase; cellulase
UN Sustainable Development Goal Categories
Sources: Web Of Science, NC State University Libraries
Added: November 26, 2018

2018 journal article

Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome

BIOTECHNOLOGY AND BIOENGINEERING, 115(10), 2426–2440.

By: J. Conway n, J. Crosby n, B. McKinley n, N. Seals n, M. Adams* & R. Kelly n

author keywords: Caldicellulosiruptor berci; cellulase; extreme thermophile; glycoside hydrolase; lignocellulose; secretome
MeSH headings : Cellulose / chemistry; Cellulose / metabolism; Firmicutes / enzymology; Firmicutes / genetics; Glycoside Hydrolases / chemistry; Glycoside Hydrolases / genetics; Glycoside Hydrolases / metabolism; Hydrolysis
TL;DR: Results suggest that the C. bescii secretome is naturally balanced to achieve optimal synergy for cellulose degradation and reinforce the importance of microbial contributions to microcrystalline cellulose hydrolysis and suggest that mass action effects from glucan fermentation shift equilibria to drive degradation. (via Semantic Scholar)
UN Sustainable Development Goal Categories
Sources: Web Of Science, NC State University Libraries
Added: October 29, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.