James Crosby Bing, R. G. G., Willard, D. J. J., Manesh, M. J. H., Laemthong, T., Crosby, J. R. R., Adams, M. W. W., & Kelly, R. M. M. (2023, February 1). Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10). MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 2. https://doi.org/10.1128/mra.01292-22 Bing, R. G., Willard, D. J., Manesh, M. J. H., Laemthong, T., Crosby, J. R., Adams, M. W. W., & Kelly, R. M. (2023). Complete Genome Sequences of Two Thermophilic Indigenous Bacteria Isolated from Wheat Straw, Thermoclostridium stercorarium subsp. Strain RKWS1 and Thermoanaerobacter sp. Strain RKWS2. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 12(3). https://doi.org/10.1128/mra.01193-22 Bing, R. G., Carey, M. J., Laemthong, T., Willard, D. J., Crosby, J. R., Sulis, D. B., … Kelly, R. M. (2023). Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth. BIORESOURCE TECHNOLOGY, 367. https://doi.org/10.1016/j.biortech.2022.128275 Laemthong, T., Bing, R. G., Crosby, J. R., Manesh, M. J. H., Adams, M. W. W., & Kelly, R. M. (2023). Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. EXTREMOPHILES, 27(1). https://doi.org/10.1007/s00792-023-01290-7 Bing, R. G. G., Willard, D. J. J., Crosby, J. R. R., Adams, M. W. W., & Kelly, R. M. M. (2023). Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype. FRONTIERS IN MICROBIOLOGY, 14. https://doi.org/10.3389/fmicb.2023.1212538 Crosby, J. R., Laemthong, T., Bing, R. G., Zhang, K., Tanwee, T. N. N., Lipscomb, G. L., … Kelly, R. M. (2022, October 11). Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 10. https://doi.org/10.1128/aem.01302-22 Laemthong, T., Bing, R. G., Crosby, J. R., Adams, M. W. W., & Kelly, R. M. (2022, September 28). Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 9. https://doi.org/10.1128/aem.01274-22 Rodionov, D. A., Rodionova, I. A., Rodionov, V. A., Arzamasov, A. A., Zhang, K., Rubinstein, G. M., … Adams, M. W. W. (2021). Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. MSystems, 6(3). https://doi.org/10.1128/mSystems.01351-20 Lee, L. L., Crosby, J. R., Rubinstein, G. M., Laemthong, T., Bing, R. G., Straub, C. T., … Kelly, R. M. (2020, January). The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'. EXTREMOPHILES, Vol. 24, pp. 1–15. https://doi.org/10.1007/s00792-019-01116-5 Crosby, J. R., Laemthong, T., Lewis, A. M., Straub, C. T., Adams, M. W. W., & Kelly, R. M. (2019). Extreme thermophiles as emerging metabolic engineering platforms. Current Opinion in Biotechnology, 59, 55–64. https://doi.org/10.1016/j.copbio.2019.02.006 Straub, C. T., Counts, J. A., Nguyen, D. M. N., Wu, C.-H., Zeldes, B. M., Crosby, J. R., … Kelly, R. M. (2018). [Review of Biotechnology of extremely thermophilic archaea]. FEMS MICROBIOLOGY REVIEWS, 42(5), 543–578. https://doi.org/10.1093/femsre/fuy012 Conway, J. M., Crosby, J. R., Hren, A. P., Southerland, R. T., Lee, L. L., Lunin, V. V., … Kelly, R. M. (2018). Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species. AICHE JOURNAL, 64(12), 4218–4228. https://doi.org/10.1002/aic.16354 Conway, J. M., Crosby, J. R., McKinley, B. S., Seals, N. L., Adams, M. W. W., & Kelly, R. M. (2018). Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome. BIOTECHNOLOGY AND BIOENGINEERING, 115(10), 2426–2440. https://doi.org/10.1002/bit.26773