@article{witherspoon_hall_jima_atkins_wamsley_major_weissman_smart_2024, title={Mutant Nrf2E79Q enhances the promotion and progression of a subset of oncogenic Ras keratinocytes and skin tumors}, volume={75}, ISSN={["2213-2317"]}, DOI={10.1016/j.redox.2024.103261}, abstractNote={Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2}, journal={REDOX BIOLOGY}, author={Witherspoon, John G. and Hall, Jonathan R. and Jima, Dereje and Atkins, Hannah M. and Wamsley, Nathan T. and Major, Michael B. and Weissman, Bernard E. and Smart, Robert C.}, year={2024}, month={Sep} } @article{house_gray_owen_jima_smart_hall_2023, title={C/EBP beta deficiency enhances the keratinocyte innate immune response to direct activators of cytosolic pattern recognition receptors}, volume={29}, ISSN={["1753-4267"]}, DOI={10.1177/17534259231162192}, abstractNote={ The skin is the first line of defense to cutaneous microbes and viruses, and epidermal keratinocytes play a critical role in preventing infection by viruses and pathogens through activation of the type I interferon (IFN) response. Using RNAseq analysis, here we report that the conditional deletion of C/EBPβ transcription factor in mouse epidermis (CKOβ mice) resulted in the upregulation of IFNβ and numerous keratinocyte interferon-stimulated genes (ISGs). The expression of cytosolic pattern recognition receptors (cPRRs), that recognize viral RNA and DNA, were significantly increased, and enriched in the RNAseq data set. cPRRs stimulate a type I IFN response that can trigger cell death to eliminate infected cells. To determine if the observed increases in cPRRs had functional consequences, we transfected CKOβ primary keratinocytes with the pathogen and viral mimics poly(I:C) (dsRNA) or poly(dA:dT) (synthetic B-DNA) that directly activate PRRs. Transfected CKOβ primary keratinocytes displayed an amplified type I IFN response which was accompanied by increased activation of IRF3, enhanced ISG expression, enhanced activation of caspase-8, caspase-3 and increased apoptosis. Our results identify C/EBPβ as a critical repressor of the keratinocyte type I IFN response, and demonstrates that the loss of C/EBPβ primes keratinocytes to the activation of cytosolic PRRs by pathogen RNA and DNA to induce cell death mediated by caspase-8 and caspase-3. }, number={1-2}, journal={INNATE IMMUNITY}, author={House, John S. and Gray, Sophia and Owen, Jennifer R. and Jima, Dereje D. and Smart, Robert C. and Hall, Jonathan R.}, year={2023}, month={Jan}, pages={14–24} } @article{kaur_barnes_pan_detwiler_liu_mahn_hall_messenger_you_piehler_et al._2021, title={TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA}, volume={49}, ISSN={["1362-4962"]}, DOI={10.1093/nar/gkab1142}, abstractNote={Abstract The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2–TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein–DNA structures, and monitoring of DNA–DNA and DNA–RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA–dsDNA, dsDNA–ssDNA and dsDNA–ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.}, number={22}, journal={NUCLEIC ACIDS RESEARCH}, author={Kaur, Parminder and Barnes, Ryan and Pan, Hai and Detwiler, Ariana C. and Liu, Ming and Mahn, Chelsea and Hall, Jonathan and Messenger, Zach and You, Changjiang and Piehler, Jacob and et al.}, year={2021}, month={Dec}, pages={13000–13018} } @article{tam_hall_messenger_jima_house_linder_smart_2019, title={C/EBP beta suppresses keratinocyte autonomous type 1 IFN response and p53 to increase cell survival and susceptibility to UVB-induced skin cancer}, volume={40}, ISSN={["1460-2180"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85083447649&partnerID=MN8TOARS}, DOI={10.1093/carcin/bgz012}, abstractNote={Abstract p53 is activated by DNA damage and oncogenic stimuli to regulate senescence, apoptosis and cell-cycle arrest, which are essential to prevent cancer. Here, we utilized UVB radiation, a potent inducer of DNA damage, p53, apoptosis and skin cancer to investigate the mechanism of CCAAT/enhancer binding protein-β (C/EBPβ) in regulating p53-mediated apoptosis in keratinocytes and to test whether the deletion of C/EBPβ in epidermis can protect mice from UVB-induced skin cancer. UVB-treatment of C/EBPβ skin conditional knockout (CKOβ) mice increased p53 protein levels in epidermis and enhanced p53-dependent apoptotic activity 3-fold compared with UVB-treated control mice. UVB increased C/EBPβ levels through a p53-dependent pathway and stimulated the formation of a C/EBPβ-p53 protein complex; knockdown of C/EBPβ increased p53 protein stability in keratinocytes. These results suggest a p53-C/EBPβ feedback loop, whereby C/EBPβ, a transcriptional target of a p53 pathway, functions as a survival factor by negatively regulating p53 apoptotic activity in response to DNA damage. RNAseq analysis of UVB-treated CKOβ epidermis unexpectedly revealed that type 1 interferon (IFN) pathway was the most highly enriched pathway. Numerous pro-apoptotic interferon stimulated genes were upregulated including some known to enhance p53 apoptosis. Our results indicate that p53 and IFN pathways function together in response to DNA damage to result in the activation of extrinsic apoptosis pathways and caspase 8 cleavage. Last, we observed CKOβ mice were resistant to UVB-induced skin cancer. Our results suggest that C/EBPβ represses apoptosis through keratinocyte autonomous suppression of the type 1 IFN response and p53 to increase cell survival and susceptibility to UVB-induced skin cancer.}, number={9}, journal={CARCINOGENESIS}, author={Tam, Hann W. and Hall, Jonathan R. and Messenger, Zachary J. and Jima, Dereje D. and House, John S. and Linder, Keith and Smart, Robert C.}, year={2019}, month={Sep}, pages={1099–1109} } @article{messenger_hall_jima_house_tam_tokarz_smart_2018, title={C/EBPβ deletion in oncogenic Ras skin tumors is a synthetic lethal event}, volume={9}, ISSN={2041-4889}, url={http://dx.doi.org/10.1038/S41419-018-1103-Y}, DOI={10.1038/s41419-018-1103-y}, abstractNote={AbstractTherapeutic targeting of specific genetic changes in cancer has proven to be an effective therapy and the concept of synthetic lethality has emerged. CCAAT/enhancer-binding protein-β (C/EBPβ), a basic leucine zipper transcription factor, has important roles in cellular processes including differentiation, inflammation, survival, and energy metabolism. Using a genetically engineered mouse model, we report that the deletion C/EBPβ in pre-existing oncogenic Ha-Ras mouse skin tumors in vivo resulted in rapid tumor regression. Regressing tumors exhibited elevated levels of apoptosis and p53 protein/activity, while adjacent C/EBPβ-deleted skin did not. These results indicate that the deletion of C/EBPβ de-represses p53 in oncogenic Ras tumors but not in normal wild-type Ras keratinocytes, and that C/EBPβ is essential for survival of oncogenic Ras tumors. Co-deletion of C/EBPβ and p53 in oncogenic Ras tumors showed p53 is required for tumor regression and elevated apoptosis. In tumors, loss of a pathway that confers adaptability to a stress phenotype of cancer/tumorigenesis, such as DNA damage, could result in selective tumor cell killing. Our results show that oncogenic Ras tumors display a significant DNA damage/replicative stress phenotype and these tumors have acquired a dependence on C/EBPβ for their survival. RNAseq data analysis of regressing tumors deleted of C/EBPβ indicates a novel interface between p53, type-1 interferon response, and death receptor pathways, which function in concert to produce activation of extrinsic apoptosis pathways. In summary, the deletion of C/EBPβ in oncogenic Ras skin tumors is a synthetic lethal event, making it a promising target for future potential anticancer therapies.}, number={11}, journal={Cell Death & Disease}, publisher={Springer Science and Business Media LLC}, author={Messenger, Zachary J. and Hall, Jonathan R. and Jima, Dereje D. and House, John S. and Tam, Hann W. and Tokarz, Debra A. and Smart, Robert C.}, year={2018}, month={Oct} } @article{duke_thompson_ihrie_taylor-just_ash_shipkowski_hall_tokarz_cesta_hubbs_et al._2018, title={Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes}, volume={12}, ISSN={["1743-5404"]}, DOI={10.1080/17435390.2018.1502830}, abstractNote={Abstract The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53+/−) mice has not been investigated. We hypothesized that p53+/− mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53+/+) or p53+/− mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53+/+ or p53+/− mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53+/− and p53+/+ mice. A constitutively larger area of CD45R+/CD3+ lymphoid tissue was observed in p53+/− mice compared to p53+/+ mice. Importantly, p53+/− mice had larger granulomas induced by rMWCNTs as compared to p53+/+ mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation.}, number={9}, journal={NANOTOXICOLOGY}, author={Duke, Katherine S. and Thompson, Elizabeth A. and Ihrie, Mark D. and Taylor-Just, Alexia J. and Ash, Elizabeth A. and Shipkowski, Kelly A. and Hall, Jonathan R. and Tokarz, Debra A. and Cesta, Mark F. and Hubbs, Ann F. and et al.}, year={2018}, month={Oct}, pages={975–991} } @article{hall_messenger_tam_phillips_recio_smart_2015, title={Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes}, volume={6}, ISSN={["2041-4889"]}, DOI={10.1038/cddis.2015.67}, abstractNote={AbstractLincRNA-p21 is a long noncoding RNA and a transcriptional target of p53 and HIF-1α. LincRNA-p21 regulates gene expression in cis and trans, mRNA translation, protein stability, the Warburg effect, and p53-dependent apoptosis and cell cycle arrest in doxorubicin-treated mouse embryo fibroblasts. p53 plays a key role in the response of skin keratinocytes to UVB-induced DNA damage by inducing cell cycle arrest and apoptosis. In skin cancer development, UVB-induced mutation of p53 allows keratinocytes upon successive UVB exposures to evade apoptosis and cell cycle arrest. We hypothesized that lincRNA-p21 has a key functional role in UVB-induced apoptosis and/or cell cycle arrest in keratinocytes and loss of lincRNA-p21 function results in the evasion of apoptosis and/or cell cycle arrest. We observed that lincRNA-p21 transcripts are highly inducible by UVB in mouse and human keratinocytes in culture and in mouse skin in vivo. LincRNA-p21 is regulated at the transcriptional level in response to UVB, and the UVB induction of lincRNA-p21 in keratinocytes and in vivo in mouse epidermis is primarily through a p53-dependent pathway. Knockdown of lincRNA-p21 blocked UVB-induced apoptosis in mouse and human keratinocytes, and lincRNA-p21 was responsible for the majority of UVB-induced and p53-mediated apoptosis in keratinocytes. Knockdown of lincRNA-p21 had no effect on cell proliferation in untreated or UVB-treated keratinocytes. An early event in skin cancer is the mutation of a single p53 allele. We observed that a mutant p53+/R172H allele expressed in mouse epidermis (K5Cre+/tg;LSLp53+/R172H) showed a significant dominant-negative inhibitory effect on UVB-induced lincRNA-p21 transcription and apoptosis in epidermis. We conclude lincRNA-p21 is highly inducible by UVB and has a key role in triggering UVB-induced apoptotic death. We propose that the mutation of a single p53 allele provides a pro-oncogenic function early in skin cancer development through a dominant inhibitory effect on UVB-induced lincRNA-p21 expression and the subsequent evasion of UVB-induced apoptosis.}, journal={CELL DEATH & DISEASE}, author={Hall, J. R. and Messenger, Z. J. and Tam, H. W. and Phillips, S. L. and Recio, L. and Smart, R. C.}, year={2015}, month={Mar} } @article{hall_bereman_nepomuceno_thompson_muddiman_smart_2014, title={C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint}, volume={13}, ISSN={1538-4101 1551-4005}, url={http://dx.doi.org/10.4161/15384101.2014.962957}, DOI={10.4161/15384101.2014.962957}, abstractNote={The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21.}, number={22}, journal={Cell Cycle}, publisher={Informa UK Limited}, author={Hall, Jonathan R and Bereman, Michael S and Nepomuceno, Angelito I and Thompson, Elizabeth A and Muddiman, David C and Smart, Robert C}, year={2014}, month={Oct}, pages={3602–3610} } @article{thompson_zhu_hall_house_ranjan_burr_he_owens_smart_2011, title={C/EBP alpha Expression Is Downregulated in Human Nonmelanoma Skin Cancers and Inactivation of C/EBP alpha Confers Susceptibility to UVB-Induced Skin Squamous Cell Carcinomas}, volume={131}, ISSN={["0022-202X"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-79956039252&partnerID=MN8TOARS}, DOI={10.1038/jid.2011.31}, abstractNote={Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.}, number={6}, journal={JOURNAL OF INVESTIGATIVE DERMATOLOGY}, author={Thompson, Elizabeth A. and Zhu, Songyun and Hall, Jonathan R. and House, John S. and Ranjan, Rakesh and Burr, Jeanne A. and He, Yu-Ying and Owens, David M. and Smart, Robert C.}, year={2011}, month={Jun}, pages={1339–1346} }