@article{kizewski_liu_morris_hesterberg_2011, title={Spectroscopic Approaches for Phosphorus Speciation in Soils and Other Environmental Systems}, volume={40}, ISSN={["1537-2537"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-79956124868&partnerID=MN8TOARS}, DOI={10.2134/jeq2010.0169}, abstractNote={In the past decades, environmental scientists have become increasingly involved in developing novel approaches for applying emerging spectroscopic techniques to complex environmental matrices. The objective of this review is to convey the most common chemical species of phosphorus reported for soils, sediments, model systems, and waste materials based on analyses by four spectroscopic techniques: X-ray absorption near-edge structure, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Unique information is provided by each technique at a level of specificity that depends in part on matrix complexity. The X-ray absorption near-edge structure and nuclear magnetic resonance techniques reveal inorganic and organic P species in intact environmental matrices or in chemical extracts, whereas the Fourier transform infrared and Raman techniques can provide more specific bonding information about mineral or adsorbed P species in model analogs of matrix components. The most common P species in soils and sediments as indicated by spectroscopy are hydroxyapatite and octacalcium phosphate minerals, phosphate adsorbed on Fe- and Al-oxides, pyrophosphates and polyphosphates, phosphate mono- and di-esters, and phosphonates. Continued advancements in spectroscopic methods should improve speciation-based models of P mobilization and transformations in the environment.}, number={3}, journal={JOURNAL OF ENVIRONMENTAL QUALITY}, author={Kizewski, Fiona and Liu, Yu-Ting and Morris, Amanda and Hesterberg, Dean}, year={2011}, month={May}, pages={751–766} } @article{kizewski_boyle_hesterberg_martin_2010, title={Mixed Anion (Phosphate/Oxalate) Bonding to Iron(III) Materials}, volume={132}, ISSN={["1520-5126"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-77749237327&partnerID=MN8TOARS}, DOI={10.1021/ja908807b}, abstractNote={A novel phosphate/oxalate inorganic-organic hybrid material has been prepared to elucidate synthesis and bonding characteristics of iron(III) with both phosphate and organic matter (OM). Such mixed anion bonding of inorganic oxyanions and OM to iron(III) and aluminum(III) in environmental systems has been proposed but not proven, mainly because of the complexity of natural geochemical matrices. The compound reported here with the molecular formula of [C(3)H(12)N(2)](2)[Fe(5)(C(2)O(4))(2)(H(x)PO(4))(8)] (I) was hydrothermally synthesized and characterized by single crystal X-ray diffraction and X-ray absorption spectroscopy (XAS). In this new structure, Fe-O octahedra and P-O tetrahedra are connected by corner-sharing to form a 2-D network in the a-b plane. Oxalate anions cross-link these Fe-P layers constructing a 3-D anionic framework. A diprotonated structure-directing template, DAP (1,3-diaminopropane), resides in the oxalate layer of the structure and offsets the negative charge of the anionic framework. Iron K-edge XANES spectra confirmed that the iron in I is Fe(III). The crystal structure of I is used to successfully fit its Fe K-edge EXAFS spectrum, which exhibits spectral signatures that unambiguously identify iron-phosphate and iron-OM bonding. Such molecular spectroscopic features will be invaluable for the evaluation of complex environmental systems. Furthermore, syntheses demonstrated the critical role of the templating amine to mediate whether or not the iron(III) is reduced by the organic acid.}, number={7}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Kizewski, Fiona R. and Boyle, Paul and Hesterberg, Dean and Martin, James D.}, year={2010}, month={Feb}, pages={2301–2308} }