@article{ryu_bowes_mcgarrahan_irving_dickey_2021, title={Fermi level pinning in Co-doped BaTiO3: Part I. DC and AC electrical conductivities and degradation behavior}, volume={105}, ISSN={["1551-2916"]}, url={https://doi.org/10.1111/jace.18042}, DOI={10.1111/jace.18042}, abstractNote={Abstract}, number={1}, journal={JOURNAL OF THE AMERICAN CERAMIC SOCIETY}, publisher={Wiley}, author={Ryu, Gyung Hyun and Bowes, Preston C. and McGarrahan, John R. and Irving, Douglas L. and Dickey, Elizabeth C.}, year={2021}, month={Jul} } @article{scurti_mcgarrahan_schwartz_2017, title={Effects of metallic coatings on the thermal sensitivity of optical fiber sensors at cryogenic temperatures}, volume={7}, ISSN={["2159-3930"]}, DOI={10.1364/ome.7.001754}, abstractNote={One promising new application for optical fiber sensors is in monitoring superconducting magnets that are, inevitably, operated at cryogenic temperatures. The cryogenic thermal sensitivity of commercially available optical fibers is depressed by the low coefficient of thermal expansion of the constituent materials. Here, single mode, telecommunication-grade optical fibers are coated with different metals to alter their sensitivity to thermal perturbation at temperatures as low as 4.2 K. Commercially available fibers with acrylate coating are compared to fibers with only metallic coatings and those with acrylate-metal composite coatings, in terms of their sensitivity to thermal perturbations in the temperature range from 4.2 to 61 K. The metals considered include Sn, PbSnAg and InBi, both on cladding and on an acrylate primary coating. Results show that the 4.2 K thermal sensitivity can be enhanced significantly by a composite coating approach.}, number={6}, journal={OPTICAL MATERIALS EXPRESS}, author={Scurti, Federico and McGarrahan, John and Schwartz, Justin}, year={2017}, month={Jun}, pages={1754–1766} }