Jun Ninomiya-Tsuji
Tsuji, Y., Ninomiya-Tsuji, J., Shen, M. Y. F., & Difrancesco, B. R. (2025). Modulation of iron metabolism by new chemicals interacting with the iron regulatory system. REDOX BIOLOGY, 79. https://doi.org/10.1016/j.redox.2024.103444
Gonzalez-Calderon, R., Lopez-Perez, W., Sai, K., & Ninomiya-Tsuji, J. (2024, March). TAK1 inhibition translocates pore-forming proteins, MLKL and gasdermins into mitochondria to generate reactive oxygen species. JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 300, pp. S555–S555. https://doi.org/10.1016/j.jbc.2024.106731
Nakanishi-Hester, A., Sai, K., & Ninomiya-Tsuji, J. (2024, March). The Mechanism and Roles of TAK1 hyperactivation in the Alzheimer's Disease Mouse Model. JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 300, pp. S556–S556. https://doi.org/10.1016/j.jbc.2024.106732
Sai, K., Nakanishi, A., Scofield, K. M., Tokarz, D. A., Linder, K. E., Cohen, T. J., & Ninomiya-Tsuji, J. (2023). Aberrantly activated TAK1 links neuroinflammation and neuronal loss in Alzheimer?s disease mouse models. JOURNAL OF CELL SCIENCE, 136(6). https://doi.org/10.1242/jcs.260102
Lopez-Perez, W., Sai, K., Sakamachi, Y., Parsons, C., Kathariou, S., & Ninomiya-Tsuji, J. (2021). TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 118(25). https://doi.org/10.1073/pnas.2023647118
Hsieh, H. H. S., Agarwal, S., Cholok, D. J., Loder, S. J., Kaneko, K., Huber, A., … Levi, B. (2019). Coordinating Tissue Regeneration Through Transforming Growth Factor-beta Activated Kinase 1 Inactivation and Reactivation. STEM CELLS, 37(6), 766–778. https://doi.org/10.1002/stem.2991
Sai, K., Parsons, C., House, J. S., Kathariou, S., & Ninomiya-Tsuji, J. (2019). Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. JOURNAL OF CELL BIOLOGY, 218(6), 1994–2005. https://doi.org/10.1083/jcb.201810014
Liu, X., Hayano, S., Pan, H., Inagaki, M., Ninomiya-Tsuji, J., Sun, H., & Mishina, Y. (2018). Compound mutations in Bmpr1a and Tak1 synergize facial deformities via increased cell death. GENESIS, 56(3). https://doi.org/10.1002/dvg.23093
Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Erratum: Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-09609-Z
Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Noncanocial cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGF beta-activated kinase 1. SCIENTIFIC REPORTS, 7(1). https://doi.org/10.1038/s41598-017-03112-1
Sakamachi, Y., Morioka, S., Mihaly, S. R., Takaesu, G., Foley, J. F., Fessler, M. B., & Ninomiya-Tsuji, J. (2017). TAK1 regulates resident macrophages by protecting lysosomal integrity. CELL DEATH & DISEASE, 8(2). https://doi.org/10.1038/cddis.2017.23
Hashimoto, K., Simmons, A. N., Kajino-Sakamoto, R., Tsuji, Y., & Ninomiya-Tsuji, J. (2016). TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. ANTIOXIDANTS & REDOX SIGNALING, 25(17), 953–964. https://doi.org/10.1089/ars.2016.6663
Sai, K., Morioka, S., Takaesu, G., Muthusamy, N., Ghashghaei, H. T., Hanafusa, H., … Ninomiya-Tsuji, J. (2016). TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus. Journal of Cell Science, 129(9), 1855–1865. https://doi.org/10.1242/jcs.180505
Simmons, A. N., Kajino-Sakamoto, R., & Ninomiya-Tsuji, J. (2016). TAK1 regulates Paneth cell integrity partly through blocking necroptosis. CELL DEATH & DISEASE, 7(4). https://doi.org/10.1038/cddis.2016.98
Morioka, S., Sai, K., Omori, E., Ikeda, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2016). TAK1 regulates hepatic lipid homeostasis through SREBP. ONCOGENE, 35(29), 3829–3838. https://doi.org/10.1038/onc.2015.453
Mihaly, S. R., Morioka, S., Ninomiya-Tsuji, J., & Takaesu, G. (2014). Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins. PLOS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094982
Ikeda, Y., Morioka, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 Binding Protein 2 Is Essential for Liver Protection from Stressors. PLOS ONE, 9(2). https://doi.org/10.1371/journal.pone.0088037
Mihaly, S. R., Ninomiya-Tsuji, J., & Morioka, S. (2014). [Review of TAK1 control of cell death]. CELL DEATH AND DIFFERENTIATION, 21(11), 1667–1676. https://doi.org/10.1038/cdd.2014.123
Morioka, S., Broglie, P., Omori, E., Ikeda, Y., Takaesu, G., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. The Journal of Cell Biology, 204(4), 607–623. https://doi.org/10.1083/JCB.201305070
Lane, J., Yumoto, K., Azhar, M., Ninomiya-Tsuji, J., Inagaki, M., Hu, Y., … Kaartinen, V. (2015). Tak1, Smad4 and Trim33 redundantly mediate TGF-beta 3 signaling during palate development. DEVELOPMENTAL BIOLOGY, 398(2), 231–241. https://doi.org/10.1016/j.ydbio.2014.12.006
Moreno-Garcia, M. E., Sommer, K., Rincon-Arano, H., Brault, M., Ninomiya-Tsuji, J., Matesic, L. E., & Rawlings, D. J. (2013). Kinase-Independent Feedback of the TAK1/TAB1 Complex on BCL10 Turnover and NF-kappa B Activation. MOLECULAR AND CELLULAR BIOLOGY, 33(6), 1149–1163. https://doi.org/10.1128/mcb.06407-11
Yumoto, K., Thomas, P. S., Lane, J., Matsuzaki, K., Inagaki, M., Ninomiya-Tsuji, J., … Kaartinen, V. (2013). TGF-beta-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 288(19), 13467–13480. https://doi.org/10.1074/jbc.m112.431775
Omori, E., Inagaki, M., Mishina, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2012). Epithelial transforming growth factor -activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences, 109(9), 3365–3370. https://doi.org/10.1073/pnas.1116188109
Takaesu, G., Inagaki, M., Takubo, K., Mishina, Y., Hess, P. R., Dean, G. A., … al. (2012). TAK1 (MAP3K7) Signaling Regulates Hematopoietic Stem Cells through TNF-Dependent and -Independent Mechanisms. PLoS ONE, 7(11), e51073. https://doi.org/10.1371/journal.pone.0051073
Morioka, S., Inagaki, M., Komatsu, Y., Mishina, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2012). TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood, 120(18), 3846–3857. https://doi.org/10.1182/blood-2012-03-416198
Criollo, A., Niso-Santano, M., Malik, S. A., Michaud, M., Morselli, E., Marino, G., … Kroemer, G. (2011). Inhibition of autophagy by TAB2 and TAB3. EMBO JOURNAL, 30(24), 4908–4920. https://doi.org/10.1038/emboj.2011.413
Omori, E., Matsumoto, K., & Ninomiya-Tsuji, J. (2011). Non-canonical beta-catenin degradation mediates reactive oxygen species-induced epidermal cell death. ONCOGENE, 30(30), 3336–3344. https://doi.org/10.1038/onc.2011.49
Omori, E., Matsumoto, K., Zhu, S., Smart, R. C., & Ninomiya-Tsuji, J. (2010). Ablation of TAK1 Upregulates Reactive Oxygen Species and Selectively Kills Tumor Cells. Cancer Research, 70(21), 8417–8425. https://doi.org/10.1158/0008-5472.can-10-1227
Sakamoto, K., Huang, B.-W., Iwasaki, K., Hailemariam, K., Ninomiya-Tsuji, J., & Tsuji, Y. (2010). Regulation of Genotoxic Stress Response by Homeodomain-interacting Protein Kinase 2 through Phosphorylation of Cyclic AMP Response Element-binding Protein at Serine 271. MOLECULAR BIOLOGY OF THE CELL, 21(16), 2966–2974. https://doi.org/10.1091/mbc.e10-01-0015
Kajino-Sakamoto, R., Omori, E., Nighot, P. K., Blikslager, A. T., Matsumoto, K., & Ninomiya-Tsuji, J. (2010). TGF-β–Activated Kinase 1 Signaling Maintains Intestinal Integrity by Preventing Accumulation of Reactive Oxygen Species in the Intestinal Epithelium. The Journal of Immunology, 185(8), 4729–4737. https://doi.org/10.4049/jimmunol.0903587
Kim, J.-Y., Kajino-Sakamoto, R., Omori, E., Jobin, C., & Ninomiya-Tsuji, J. (2009). Intestinal Epithelial-Derived TAK1 Signaling Is Essential for Cytoprotection against Chemical-Induced Colitis. PLOS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004561
Morioka, S., Omori, E., Kajino, T., Kajino-Sakamoto, R., Matsumoto, K., & Ninomiya-Tsuji, J. (2009). TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. ONCOGENE, 28(23), 2257–2265. https://doi.org/10.1038/onc.2009.110
Broglie, P., Matsumoto, K., Akira, S., Brautigan, D. L., & Ninomiya-Tsuji, J. (2010). Transforming Growth Factor beta-activated Kinase 1 (TAK1) Kinase Adaptor, TAK1-binding Protein 2, Plays Dual Roles in TAK1 Signaling by Recruiting Both an Activator and an Inhibitor of TAK1 Kinase in Tumor Necrosis Factor Signaling Pathway. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(4), 2333–2339. https://doi.org/10.1074/jbc.M109.090522
Kajino-Sakamoto, R., Inagaki, M., Kim, J.-Y., Robine, S., Matsumoto, K., Jobin, C., & Ninomiya-Tsuji, J. (2008). 203 TAK1 Is Essential for Intestinal Epithelial Cell Survival and Regulates Intestinal Integrity. Gastroenterology, 134(4), A-35-A-36. https://doi.org/10.1016/S0016-5085(08)60172-9
Kajino-Sakamoto, R., Inagaki, M., Lippert, E., Akira, S., Robine, S., Matsumoto, K., … Ninomiya-Tsuji, J. (2008). Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. JOURNAL OF IMMUNOLOGY, 181(2), 1143–1152. https://doi.org/10.4049/jimmunol.181.2.1143
Inagaki, M., Komatsu, Y., Scott, G., Yamada, G., Ray, M., Ninomiya-Tsuji, J., & Mishina, Y. (2008). Generation of a conditional mutant allele for Tab1 in mouse. GENESIS, 46(8), 431–439. https://doi.org/10.1002/dvg.20418
Prickett, T. D., Ninomiya-Tsuji, J., Broglie, P., Muratore-Schroeder, T. L., Shabanowitz, J., Hunt, D. F., & Brautigan, D. L. (2008). TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappa B. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(28), 19245–19254. https://doi.org/10.1074/jbc.m800943200
Omori, E., Morioka, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2008). TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(38), 26161–26168. https://doi.org/10.1074/jbc.M804513200
Inagaki, M., Omori, E., Kim, J.-Y., Komatsu, Y., Scott, G., Ray, M. K., … Ninomiya-Tsuji, J. (2008). TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(48), 33080–33086. https://doi.org/10.1074/jbc.M807574200
Ninomiya-Tsuji, J. (2007). Mitochondrial Dysfunction. In Molecular and Biochemical Toxicology, Fourth Edition (pp. 319–332). https://doi.org/10.1002/9780470285251.ch17
HuangFu, W.-C., Matsumoto, K., & Ninomiya-Tsuji, J. (2007). Osmotic stress blocks NF-kappa B-dependent in inflammatory responses by inhibiting ubiquitination of I kappa B. FEBS LETTERS, 581(29), 5549–5554. https://doi.org/10.1016/j.febslet.2007.11.002
Kajino, T., Omori, E., Ishii, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2007). TAK1 MAPK kinase kinase mediates transforming growth factor-beta signaling by targeting SnoN oncoprotein for degradation. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(13), 9475–9481. https://doi.org/10.1074/jbc.M700875200
Kim, J.-Y., Omori, E., Matsumoto, K., Nunez, G., & Ninomiya-Tsuji, J. (2008). TAK1 is a central mediator of NOD2 signaling in epidermal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(1), 137–144. https://doi.org/10.1074/jbc.M704746200
HuangFu, W.-C., Omori, E., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). Osmotic Stress Activates the TAK1-JNK Pathway While Blocking TAK1-mediated NF-κB Activation. Journal of Biological Chemistry, 281(39), 28802–28810. https://doi.org/10.1074/JBC.M603627200
Huangfu, W. C., Omori, E., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-kappa B activation - TAO2 regulates TAK1 pathways. Journal of Biological Chemistry, 281(39), 28802–28810. https://doi.org/10.1014/jbc.M60362/200
Kajino, T., Ren, H., Iemura, S.-ichiro, Natsume, T., Stefansson, B., Brautigan, D. L., … Ninomiya-Tsuji, J. (2006). Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(52), 39891–39896. https://doi.org/10.1074/jbc.M608155200
Uemura, N., Kajino, T., Sanjo, H., Sato, S., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). TAK1 is a component of the Epstein-Barr virus LMP1 complex and is essential for activation of JNK but not of NF-kappa B. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(12), 7863–7872. https://doi.org/10.1074/jbc.M509834200
Omori, E., Matsumoto, K., Sanjo, H., Sato, S., Akira, S., Smart, R. C., & Ninomiya-Tsuji, J. (2006). TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(28), 19610–19617. https://doi.org/10.1074/jbc.M603384200
Sato, S., Sanjo, H., Tsujimura, T., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., … Akira, S. (2006). TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. INTERNATIONAL IMMUNOLOGY, 18(10), 1405–1411. https://doi.org/10.1093/intimm/dxl082
Ninomiya-Tsuji, J., & Matsumoto, K. (2006). Tab1. AfCS-Nature Molecule Pages, 3. https://doi.org/10.1038/mp.a002247.01
Ninomiya-Tsuji, J., & Matsumoto, K. (2006). Tak1. AfCS-Nature Molecule Pages, 1. https://doi.org/10.1038/mp.a002249.01
Li, J., Miller, E. J., Ninomiya-Tsuji, J., Russell, R. R., & Young, L. H. (2005). AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. CIRCULATION RESEARCH, 97(9), 872–879. https://doi.org/10.1161/01.RES.0000187458.77026.10
Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., … Akira, S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. NATURE IMMUNOLOGY, 6(11), 1087–1095. https://doi.org/10.1038/ni1255
Kishida, S., Sanjo, H., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2005). TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. GENES TO CELLS, 10(5), 447–454. https://doi.org/10.1111/j.1365-2443.2005.00852.x
Safwat, N., Ninomiya-Tsuji, J., Gore, A. J., & Miller, W. L. (2005). Transforming growth factor beta-activated kinase 1 is a key mediator of ovine follicle-stimulating hormone beta-subunit expression. ENDOCRINOLOGY, 146(11), 4814–4824. https://doi.org/10.1210/en.2005-0457
Akiyama, S., Yonezawa, T., Kudo, T. A., Li, M. G., Wang, H., Ito, M., … Kobayashi, T. (2004). Activation mechanism of c-Jun amino-terminal kinase in the course of neural differentiation of P19 embryonic carcinoma cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 279(35), 36616–36620. https://doi.org/10.1074/jbc.M406610200
Takeda, K., Matsuzawa, A., Nishitoh, H., Tobiume, K., Kishida, S., Ninomiya‐Tsuji, J., … Ichijo, H. (2004). Involvement of ASK1 in Ca
2+
‐induced p38 MAP kinase activation. EMBO Reports, 5(2), 161–166. https://doi.org/10.1038/sj.embor.7400072
Kanei-Ishii, C., Ninomiya-Tsuji, J., Tanikawa, J., Nomura, T., Ishitani, T., Kishida, S., … Ishii, S. (2004). Wnt-1 signal induces, phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes and Development, 18(7), 816–829. https://doi.org/10.1101/gad.1170604
Ono, K., Ohtomo, T., Ninomiya-Tsuji, J., & Tsuchiya, M. (2003). A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 307(2), 332–337. https://doi.org/10.1016/S0006-291X(03)01207-5
Ninomiya-Tsuji, J., Kajino, T., Ono, K., Ohtomo, T., Matsumoto, M., Shiina, M., … Matsumoto, K. (2003). A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. JOURNAL OF BIOLOGICAL CHEMISTRY, 278(20), 18485–18490. https://doi.org/10.1074/jbc.M207453200
Ishitani, T., Ninomiya-Tsuji, J., & Matsumoto, K. (2003). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling. Molecular and Cellular Biology, 23(4), 1379–1389. https://doi.org/10.1128/MCB.23.4.1379-1389.2003
Li, M. G., Katsura, K., Nomiyama, H., Komaki, K., Ninomiya-Tsuji, J., Matsumoto, K., … Tamura, S. (2003). Regulation of the interleukin-1-induced signaling pathways by a novel member of the protein phosphatase 2C family (PP2C epsilon). JOURNAL OF BIOLOGICAL CHEMISTRY, 278(14), 12013–12021. https://doi.org/10.1074/jbc.M211474200
Ishitani, T., Takaesu, G., Ninomiya-Tsuji, J., Shibuya, H., Gaynor, R. B., & Matsumoto, K. (2003). Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO Journal, 22(23), 6277–6288. https://doi.org/10.1093/emboj/cdg605
Sanjo, H., Takeda, K., Tsujimura, T., Ninomiya-Tsuji, J., Matsumoto, K., & Akira, S. (2003). TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Molecular and Cellular Biology, 23(4), 1231–1238. https://doi.org/10.1128/MCB.23.4.1231-1238.2003
Takaesu, G., Surabhi, R. M., Park, K. J., Ninomiya-Tsuji, J., Matsumoto, K., & Gaynor, R. B. (2003). TAK1 is critical for I kappa B kinase-mediated activation of the NF-kappa B pathway. JOURNAL OF MOLECULAR BIOLOGY, 326(1), 105–115. https://doi.org/10.1016/S0022-2836(02)01404-3
Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K., & Li, X. (2002). Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Molecular and Cellular Biology, 22(20), 7158–7167. https://doi.org/10.1128/MCB.22.20.7158-7167.2002
Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K., & Sakurai, N. (2002). Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Molecular and Cellular Biology, 22(4), 992–1000. https://doi.org/10.1128/MCB.22.4.992-1000.2002
Tanaka-Hino, M., Sagasti, A., Hisamoto, N., Kawasaki, M., Nakano, S., Ninomiya-Tsuji, J., … Matsumoto, K. (2002). SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Reports, 3(1), 56–62. https://doi.org/10.1093/embo-reports/kvf001
Komatsu, Y., Shibuya, H., Takeda, N., Ninomiya-Tsuji, J., Yasui, T., Miyado, K., … Yamada, G. (2002). Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. MECHANISMS OF DEVELOPMENT, 119(2), 239–249. https://doi.org/10.1016/S0925-4773(02)00391-X
Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., … Matsumoto, K. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Molecular and Cellular Biology, 23(1), 131–139. https://doi.org/10.1128/MCB.23.1.131-139.2003
Inoue, H., Tateno, M., Fujimura-Kamada, K., Takaesu, G., Adachi-Yamada, T., Ninomiya-Tsuji, J., … Matsumoto, K. (2001). A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK. EMBO Journal, 20(19), 5421–5430. https://doi.org/10.1093/emboj/20.19.5421
Ono, K., Ohtomo, T., Sato, S., Sugamata, Y., Suzuki, M., Hisamoto, N., … Matsumoto, K. (2001). An Evolutionarily Conserved Motif in the TAB1 C-terminal Region is Necessary for Interaction with and Activation of TAK1 MAPKKK. Journal of Biological Chemistry, 276(26), 24396–24400. https://doi.org/10.1074/jbc.M102631200
Qian, Y., Commane, M., Ninomiya-Tsuji, J., Matsumoto, K., & Li, X. (2001). IRAK-mediated Translocation of TRAF6 and TAB2 in the Interleukin-1-induced Activation of NFκB. Journal of Biological Chemistry, 276(45), 41661–41667. https://doi.org/10.1074/jbc.M102262200
Takaesu, G., Ninomiya-Tsuji, J., Kishida, S., Li, X., Stark, G. R., & Matsumoto, K. (2001). Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Molecular and Cellular Biology, 21(7), 2475–2484. https://doi.org/10.1128/MCB.21.7.2475-2484.2001
Hanada, M., Ninomiya-Tsuji, J., Komaki, K.-I., Ohnishi, M., Katsura, K., Kanamaru, R., … Tamura, S. (2001). Regulation of the TAK1 Signaling Pathway by Protein Phosphatase 2C. Journal of Biological Chemistry, 276(8), 5753–5759. https://doi.org/10.1074/jbc.M007773200
Holtmann, H., Enninga, J., Kälble, S., Thiefes, A., Dörrie, A., Broemer, M., … Kracht, M. (2001). The MAPK Kinase Kinase TAK1 Plays a Central Role in Coupling the Interleukin-1 Receptor to Both Transcriptional and RNA-targeted Mechanisms of Gene Regulation. Journal of Biological Chemistry, 276(5), 3508–3516. https://doi.org/10.1074/jbc.M004376200
Mochida, Y., Takeda, K., Saitoh, M., Nishitoh, H., Amagasa, T., Ninomiya-Tsuji, J., … Ichijo, H. (2000). ASK1 inhibits interleukin-1-induced NF-κB activity through disruption of TRAF6-TAK1 interaction. Journal of Biological Chemistry, 275(42), 32747–32752. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0034693222&partnerID=MN8TOARS
Dan, I., Watanabe, N. M., Kobayashi, T., Yamashita-Suzuki, K., Fukagaya, Y., Kajikawa, E., … Kusumi, A. (2000). Molecular cloning of MINK, a novel member of mammalian GCK family kinases, which is up-regulated during postnatal mouse cerebral development. FEBS Letters, 469(1), 19–23. https://doi.org/10.1016/S0014-5793(00)01247-3
Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., … Matsumoto, K. (2000). TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Molecular Cell, 5(4), 649–658. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0033634977&partnerID=MN8TOARS
Kishimoto, K., Matsumoto, K., & Ninomiya-Tsuji, J. (2000). TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. Journal of Biological Chemistry, 275(10), 7359–7364. https://doi.org/10.1074/jbc.275.10.7359
Kawasaki, M., Hisamoto, N., Lino, Y., Yamamoto, M., Ninomiya-Tsuji, J., & Matsumoto, K. (1999). A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. EMBO Journal, 18(13), 3604–3615. https://doi.org/10.1093/emboj/18.13.3604
Hanafusa, H., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J.-I., Shibuya, H., … Nishida, E. (1999). Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. Journal of Biological Chemistry, 274(38), 27161–27167. https://doi.org/10.1074/jbc.274.38.27161
Meneghini, M. D., Ishitani, T., Carter, J. C., Hisamoto, N., Ninomiya-Tsuji, J., Thorpe, C. J., … Bowerman, B. (1999). Map kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 399(6738), 793–797. https://doi.org/10.1038/21666
Ishitani, T., Ninomiya-Tsuji, J., Nagai, S.-I., Nishita, M., Meneghini, M., Barker, N., … Matsumoto, K. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between β- catenin and transcription factor TCF. Nature, 399(6738), 798–802. https://doi.org/10.1038/21674
Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J.-I., Cao, Z., & Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398(6724), 252–256. https://doi.org/10.1038/18465
Yamaguchi, K., Nagai, S.-I., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., … Matsumoto, K. (1999). XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO Journal, 18(1), 179–187. https://doi.org/10.1093/emboj/18.1.179
Nomoto, S., Watanabe, Y., Ninomiya-Tsuji, J., Yang, L.-X., Kiuchi, K., Hagiwara, M., … Irie, K. (1997). Functional analyses of mammalian protein kinase C isozymes in budding yeast and mammalian fibroblasts. Genes to Cells, 2(10), 601–614. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031240976&partnerID=MN8TOARS
Ninomiya-Tsuji, J., Matsumoto, K., & Shibuya, H. (1997). TGF-beta signaling. Tanpakushitsu Kakusan Koso. Protein, Nucleic Acid, Enzyme, 42(10 Suppl), 1517–1524. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031183774&partnerID=MN8TOARS
Ota, T., Maeda, M., Odashima, S., Ninomiya-Tsuji, J., & Tatsuka, M. (1996). G1 phase-specific suppression of the Cdk2 activity by ginsenoside Rh2 in cultured murine cells. Life Sciences, 60(2). https://doi.org/10.1016/s0024-3205(96)00608-x
Tsuji, Y., Ninomiya-Tsuji, J., Torti, S. V., & Torti, F. M. (1993). Augmentation by IL-1α of tumor necrosis factor-α cytotoxicity in cells transfected with adenovirus E1A. Journal of Immunology, 150(5), 1897–1907. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0027223371&partnerID=MN8TOARS
Tsuji, Y., Ninomiya-Tsuji, J., Torti, S. V., & Torti, F. M. (1993). Selective loss of CDC2 and CDK2 induction by tumor necrosis factor-α in senescent human diploid fibroblasts. Experimental Cell Research, 209(2), 175–182. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0027146392&partnerID=MN8TOARS
Ninomiya-Tsuji, J., Torti, F. M., & Ringold, G. M. (1993). Tumor necrosis factor-induced c-myc expression in the absence of mitogenesis is associated with inhibition of adipocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9611–9615. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0027491022&partnerID=MN8TOARS
Yasuda, H., Nakata, T., Kamijo, M., Honda, R., Nakamura, M., Ninomiya-Tsuji, J., … Ohba, Y. (1992). Cyclin-dependent kinase 2 (cdk2) in the murine cdc2 kinase TS mutant. Somatic Cell and Molecular Genetics, 18(5), 403–408. https://doi.org/10.1007/BF01233079
Shibuya, H., Yoneyama, M., Ninomiya-Tsuji, J., Matsumoto, K., & Taniguchi, T. (1992). IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: Demonstration of a novel role for c-myc. Cell, 70(1), 57–67. https://doi.org/10.1016/0092-8674(92)90533-I
Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Goebl, M., Taniguchi, T., & Matsumoto, K. (1992). New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature, 357(6380), 700–702. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0026689020&partnerID=MN8TOARS
Ninomiya-Tsuji, J., Nomoto, S., Yasuda, H., Reed, S. I., & Matsumoto, K. (1991). Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proceedings of the National Academy of Sciences of the United States of America, 88(20), 9006–9010. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0025946804&partnerID=MN8TOARS
Takasuka, T., Ninomiya-Tsuji, J., Sakayama, M., Ishibashi, S., & Ide, T. (1990). A temperature-sensitive cell-cycle mutant of mammalian cells, tsJT16, is defective in a function operating soon after growth stimulation. Cell Structure and Function, 15(1), 39–45. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0025276307&partnerID=MN8TOARS
Tai, Y. Y., Ninomiya-Tsuji, J., Furuoku, K., Ogawa, N., Ishibashi, S., Shiroki, K., … Ide, T. (1990). Nonlethal G0-ts mutant tsJT60 becomes lethal at the nonpermissive temperature after transformation: A hint for new cancer chemotherapeutics. Cell Structure and Function, 15(6), 385–391. https://doi.org/10.1247/csf.15.385
Tai, Y. Y., Goto, Y., Ninomiya-Tsuji, J., Kameoka, Y., Ishibashi, S., Shiroki, K., & Ide, T. (1988). A cell cycle G0-ts mutant, tsJT60, becomes lethal at the nonpermissive temperature after transformation with adenovirus 12 E1B 19K mutant. Experimental Cell Research, 179(1), 50–57. https://doi.org/10.1016/0014-4827(88)90347-3
Ninomiya-Tsuji, J., Nakahara, Y., Ito, C., Akiyama, T., Ishibashi, S., & Ide, T. (1987). Bypass of the ts Block of tsJT60, a G0-Specific ts Mutant from Rat Fibroblasts, by Fetal Bovine Serum and Epidermal Growth Factor. Cell Structure and Function, 12(5), 421–432. https://doi.org/10.1247/csf.12.421
Miura, M., Ninomiya-Tsuji, J., Tsuji, Y., Ishibashi, S., & Ide, T. (1987). Colchicine activates cell cycle-dependent genes in growth-arrested rat 3Y1 cells. Experimental Cell Research, 173(1), 294–298. https://doi.org/10.1016/0014-4827(87)90356-9
Ninomiya-Tsuji, J., Ishibashi, S., & Ide, T. (1987). Entrance of SV40-transformed Cells into g0 Phase as Revealed by a Study Using the g0-specific ts mutant tsjt60. Cancer Research, 47(22), 6028–6032. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0023589313&partnerID=MN8TOARS
Ninomiya-Tsuji, J., Nakahara, Y., Ito, C., Akiyama, T., Ishibashi, S., & Ide, T. (1987). Epidermal growth factor has a unique effect in combination with fetal bovine serum to bypass the ts-block of Go-specific ts mutant tsJT60. Experimental Cell Research, 171(1), 86–93. https://doi.org/10.1016/0014-4827(87)90253-9
Ninomiya-Tsuji, J., Goto, Y., Ishibashi, S., Shiroki, K., & Ide, T. (1987). Induction of cellular DNA synthesis in G0-specific ts mutant, tsJT60, following Infection with SV40 and adenoviruses. Experimental Cell Research, 171(2), 509–512. https://doi.org/10.1016/0014-4827(87)90183-2
Goto, Y., Ninomiya-Tsuji, J., Tanonaka, K., Ishibashi, S., Shiroki, K., & Ide, T. (1987). tsJT60, a cell cycle G0-ts mutant, becomes lethal at non-permissive temperature by transformation with adenovirus 5 when the expression of E1B gene is lacking. Experimental Cell Research, 170(2), 491–498. https://doi.org/10.1016/0014-4827(87)90323-5
Ninomiya-Tsuji, J., Goto, Y., Ishibashi, S., & Ide, T. (1986). Defect in prereplicative phase of G0-specific ts mutant, tsJT60. Experimental Cell Research, 165(1), 191–198. https://doi.org/10.1016/0014-4827(86)90543-4
Ide, T., Ninomiya-Tsuji, J., Ferrari, S., Philiponis, V., & Baserga, R. (1986). Expression of Growth-Regulated Genes in tsJT60 Cells, a Temperature-Sensitive Mutant of the Cell Cycle. Biochemistry, 25(22), 7041–7046. https://doi.org/10.1021/bi00370a043
Kihara, F., Ninomiya-Tsuji, J., Ishibashi, S., & Ide, T. (1986). Failure in S6 protein phosphorylation by serum stimulatio of senescent human diploid fibroblasts, TIG-1. Mechanisms of Ageing and Development, 37(1), 27–40. https://doi.org/10.1016/0047-6374(86)90115-6
Tanonaka, K., Ninomiya-Tsuji, J., Ishibashi, S., & Ide, T. (1986). Isolation of ts mutant cells which arrest in G1/G0 phase at the non-permissive temperature in the presence of appropriate growth factors from a Fischer rat cell line, 3Y1. Experimental Cell Research, 165(2), 337–344. https://doi.org/10.1016/0014-4827(86)90587-2
Ide, T., Ninomiya, J., & Ishibashi, S. (1984). Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1. Experimental Cell Research, 150(1), 60–67. https://doi.org/10.1016/0014-4827(84)90701-8
Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1. . (1984). Exp. Cell Res.