Jun Ninomiya-Tsuji Sai, K., Nakanishi, A., Scofield, K. M., Tokarz, D. A., Linder, K. E., Cohen, T. J., & Ninomiya-Tsuji, J. (2023). Aberrantly activated TAK1 links neuroinflammation and neuronal loss in Alzheimer?s disease mouse models. JOURNAL OF CELL SCIENCE, 136(6). https://doi.org/10.1242/jcs.260102 Lopez-Perez, W., Sai, K., Sakamachi, Y., Parsons, C., Kathariou, S., & Ninomiya-Tsuji, J. (2021). TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 118(25). https://doi.org/10.1073/pnas.2023647118 Hsieh, H. H. S., Agarwal, S., Cholok, D. J., Loder, S. J., Kaneko, K., Huber, A., … Levi, B. (2019). Coordinating Tissue Regeneration Through Transforming Growth Factor-beta Activated Kinase 1 Inactivation and Reactivation. STEM CELLS, 37(6), 766–778. https://doi.org/10.1002/stem.2991 Sai, K., Parsons, C., House, J. S., Kathariou, S., & Ninomiya-Tsuji, J. (2019). Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. JOURNAL OF CELL BIOLOGY, 218(6), 1994–2005. https://doi.org/10.1083/jcb.201810014 Liu, X., Hayano, S., Pan, H., Inagaki, M., Ninomiya-Tsuji, J., Sun, H., & Mishina, Y. (2018). Compound mutations in Bmpr1a and Tak1 synergize facial deformities via increased cell death. GENESIS, 56(3). https://doi.org/10.1002/dvg.23093 Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Erratum: Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-09609-Z Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Noncanocial cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGF beta-activated kinase 1. SCIENTIFIC REPORTS, 7. https://doi.org/10.1038/s41598-017-03112-1 Sakamachi, Y., Morioka, S., Mihaly, S. R., Takaesu, G., Foley, J. F., Fessler, M. B., & Ninomiya-Tsuji, J. (2017). TAK1 regulates resident macrophages by protecting lysosomal integrity. CELL DEATH & DISEASE, 8. https://doi.org/10.1038/cddis.2017.23 Hashimoto, K., Simmons, A. N., Kajino-Sakamoto, R., Tsuji, Y., & Ninomiya-Tsuji, J. (2016). TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. ANTIOXIDANTS & REDOX SIGNALING, 25(17), 953–964. https://doi.org/10.1089/ars.2016.6663 Sai, K., Morioka, S., Takaesu, G., Muthusamy, N., Ghashghaei, H. T., Hanafusa, H., … Ninomiya-Tsuji, J. (2016). TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus. Journal of Cell Science, 129(9), 1855–1865. https://doi.org/10.1242/jcs.180505 Simmons, A. N., Kajino-Sakamoto, R., & Ninomiya-Tsuji, J. (2016). TAK1 regulates Paneth cell integrity partly through blocking necroptosis. CELL DEATH & DISEASE, 7. https://doi.org/10.1038/cddis.2016.98 Morioka, S., Sai, K., Omori, E., Ikeda, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2016). TAK1 regulates hepatic lipid homeostasis through SREBP. ONCOGENE, 35(29), 3829–3838. https://doi.org/10.1038/onc.2015.453 Lane, J., Yumoto, K., Azhar, M., Ninomiya-Tsuji, J., Inagaki, M., Hu, Y., … Kaartinen, V. (2015). Tak1, Smad4 and Trim33 redundantly mediate TGF-beta 3 signaling during palate development. DEVELOPMENTAL BIOLOGY, 398(2), 231–241. https://doi.org/10.1016/j.ydbio.2014.12.006 Mihaly, S. R., Morioka, S., Ninomiya-Tsuji, J., & Takaesu, G. (2014). Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins. PLOS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094982 Ikeda, Y., Morioka, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 Binding Protein 2 Is Essential for Liver Protection from Stressors. PLOS ONE, 9(2). https://doi.org/10.1371/journal.pone.0088037 Mihaly, S. R., Ninomiya-Tsuji, J., & Morioka, S. (2014). [Review of TAK1 control of cell death]. CELL DEATH AND DIFFERENTIATION, 21(11), 1667–1676. https://doi.org/10.1038/cdd.2014.123 Morioka, S., Broglie, P., Omori, E., Ikeda, Y., Takaesu, G., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. The Journal of Cell Biology, 204(4), 607–623. https://doi.org/10.1083/JCB.201305070 Moreno-Garcia, M. E., Sommer, K., Rincon-Arano, H., Brault, M., Ninomiya-Tsuji, J., Matesic, L. E., & Rawlings, D. J. (2013). Kinase-Independent Feedback of the TAK1/TAB1 Complex on BCL10 Turnover and NF-kappa B Activation. MOLECULAR AND CELLULAR BIOLOGY, 33(6), 1149–1163. https://doi.org/10.1128/mcb.06407-11 Yumoto, K., Thomas, P. S., Lane, J., Matsuzaki, K., Inagaki, M., Ninomiya-Tsuji, J., … Kaartinen, V. (2013). TGF-beta-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 288(19), 13467–13480. https://doi.org/10.1074/jbc.m112.431775 Omori, E., Inagaki, M., Mishina, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2012). Epithelial transforming growth factor  -activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences, 109(9), 3365–3370. https://doi.org/10.1073/pnas.1116188109 Takaesu, G., Inagaki, M., Takubo, K., Mishina, Y., Hess, P. R., Dean, G. A., … al. (2012). TAK1 (MAP3K7) Signaling Regulates Hematopoietic Stem Cells through TNF-Dependent and -Independent Mechanisms. PLoS ONE, 7(11), e51073. https://doi.org/10.1371/journal.pone.0051073 Criollo, A., Niso-Santano, M., Malik, S. A., Michaud, M., Morselli, E., Marino, G., … Kroemer, G. (2011). Inhibition of autophagy by TAB2 and TAB3. EMBO JOURNAL, 30(24), 4908–4920. https://doi.org/10.1038/emboj.2011.413 Omori, E., Matsumoto, K., & Ninomiya-Tsuji, J. (2011). Non-canonical beta-catenin degradation mediates reactive oxygen species-induced epidermal cell death. ONCOGENE, 30(30), 3336–3344. https://doi.org/10.1038/onc.2011.49 Omori, E., Matsumoto, K., Zhu, S., Smart, R. C., & Ninomiya-Tsuji, J. (2010). Ablation of TAK1 Upregulates Reactive Oxygen Species and Selectively Kills Tumor Cells. Cancer Research, 70(21), 8417–8425. https://doi.org/10.1158/0008-5472.can-10-1227 Sakamoto, K., Huang, B.-W., Iwasaki, K., Hailemariam, K., Ninomiya-Tsuji, J., & Tsuji, Y. (2010). Regulation of Genotoxic Stress Response by Homeodomain-interacting Protein Kinase 2 through Phosphorylation of Cyclic AMP Response Element-binding Protein at Serine 271. MOLECULAR BIOLOGY OF THE CELL, 21(16), 2966–2974. https://doi.org/10.1091/mbc.e10-01-0015 Kajino-Sakamoto, R., Omori, E., Nighot, P. K., Blikslager, A. T., Matsumoto, K., & Ninomiya-Tsuji, J. (2010). TGF-β–Activated Kinase 1 Signaling Maintains Intestinal Integrity by Preventing Accumulation of Reactive Oxygen Species in the Intestinal Epithelium. The Journal of Immunology, 185(8), 4729–4737. https://doi.org/10.4049/jimmunol.0903587 Broglie, P., Matsumoto, K., Akira, S., Brautigan, D. L., & Ninomiya-Tsuji, J. (2010). Transforming Growth Factor beta-activated Kinase 1 (TAK1) Kinase Adaptor, TAK1-binding Protein 2, Plays Dual Roles in TAK1 Signaling by Recruiting Both an Activator and an Inhibitor of TAK1 Kinase in Tumor Necrosis Factor Signaling Pathway. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(4), 2333–2339. https://doi.org/10.1074/jbc.M109.090522 Kim, J.-Y., Kajino-Sakamoto, R., Omori, E., Jobin, C., & Ninomiya-Tsuji, J. (2009). Intestinal Epithelial-Derived TAK1 Signaling Is Essential for Cytoprotection against Chemical-Induced Colitis. PLOS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004561 Morioka, S., Omori, E., Kajino, T., Kajino-Sakamoto, R., Matsumoto, K., & Ninomiya-Tsuji, J. (2009). TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. ONCOGENE, 28(23), 2257–2265. https://doi.org/10.1038/onc.2009.110 Kajino-Sakamoto, R., Inagaki, M., Kim, J.-Y., Robine, S., Matsumoto, K., Jobin, C., & Ninomiya-Tsuji, J. (2008). 203 TAK1 Is Essential for Intestinal Epithelial Cell Survival and Regulates Intestinal Integrity. Gastroenterology, 134(4), A-35-A-36. https://doi.org/10.1016/S0016-5085(08)60172-9 Kajino-Sakamoto, R., Inagaki, M., Lippert, E., Akira, S., Robine, S., Matsumoto, K., … Ninomiya-Tsuji, J. (2008). Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. JOURNAL OF IMMUNOLOGY, 181(2), 1143–1152. https://doi.org/10.4049/jimmunol.181.2.1143 Inagaki, M., Komatsu, Y., Scott, G., Yamada, G., Ray, M., Ninomiya-Tsuji, J., & Mishina, Y. (2008). Generation of a conditional mutant allele for Tab1 in mouse. GENESIS, 46(8), 431–439. https://doi.org/10.1002/dvg.20418 Prickett, T. D., Ninomiya-Tsuji, J., Broglie, P., Muratore-Schroeder, T. L., Shabanowitz, J., Hunt, D. F., & Brautigan, D. L. (2008). TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappa B. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(28), 19245–19254. https://doi.org/10.1074/jbc.m800943200 Kim, J.-Y., Omori, E., Matsumoto, K., Nunez, G., & Ninomiya-Tsuji, J. (2008). TAK1 is a central mediator of NOD2 signaling in epidermal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(1), 137–144. https://doi.org/10.1074/jbc.M704746200 Omori, E., Morioka, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2008). TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(38), 26161–26168. https://doi.org/10.1074/jbc.M804513200 Inagaki, M., Omori, E., Kim, J.-Y., Komatsu, Y., Scott, G., Ray, M. K., … Ninomiya-Tsuji, J. (2008). TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(48), 33080–33086. https://doi.org/10.1074/jbc.M807574200 HuangFu, W.-C., Matsumoto, K., & Ninomiya-Tsuji, J. (2007). Osmotic stress blocks NF-kappa B-dependent in inflammatory responses by inhibiting ubiquitination of I kappa B. FEBS LETTERS, 581(29), 5549–5554. https://doi.org/10.1016/j.febslet.2007.11.002 Kajino, T., Omori, E., Ishii, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2007). TAK1 MAPK kinase kinase mediates transforming growth factor-beta signaling by targeting SnoN oncoprotein for degradation. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(13), 9475–9481. https://doi.org/10.1074/jbc.M700875200 HuangFu, W.-C., Omori, E., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). Osmotic Stress Activates the TAK1-JNK Pathway While Blocking TAK1-mediated NF-κB Activation. Journal of Biological Chemistry, 281(39), 28802–28810. https://doi.org/10.1074/JBC.M603627200 Huangfu, W. C., Omori, E., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-kappa B activation - TAO2 regulates TAK1 pathways. Journal of Biological Chemistry, 281(39), 28802–28810. https://doi.org/10.1014/jbc.M60362/200 Kajino, T., Ren, H., Iemura, S.-ichiro, Natsume, T., Stefansson, B., Brautigan, D. L., … Ninomiya-Tsuji, J. (2006). Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(52), 39891–39896. https://doi.org/10.1074/jbc.M608155200 Uemura, N., Kajino, T., Sanjo, H., Sato, S., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2006). TAK1 is a component of the Epstein-Barr virus LMP1 complex and is essential for activation of JNK but not of NF-kappa B. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(12), 7863–7872. https://doi.org/10.1074/jbc.M509834200 Omori, E., Matsumoto, K., Sanjo, H., Sato, S., Akira, S., Smart, R. C., & Ninomiya-Tsuji, J. (2006). TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. JOURNAL OF BIOLOGICAL CHEMISTRY, 281(28), 19610–19617. https://doi.org/10.1074/jbc.M603384200 Sato, S., Sanjo, H., Tsujimura, T., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., … Akira, S. (2006). TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. INTERNATIONAL IMMUNOLOGY, 18(10), 1405–1411. https://doi.org/10.1093/intimm/dxl082 Ninomiya-Tsuji, J., & Matsumoto, K. (2006). Tab1. AfCS-Nature Molecule Pages. https://doi.org/10.1038/mp.a002247.01 Ninomiya-Tsuji, J., & Matsumoto, K. (2006). Tak1. AfCS-Nature Molecule Pages. https://doi.org/10.1038/mp.a002249.01 Li, J., Miller, E. J., Ninomiya-Tsuji, J., Russell, R. R., & Young, L. H. (2005). AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. CIRCULATION RESEARCH, 97(9), 872–879. https://doi.org/10.1161/01.RES.0000187458.77026.10 Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., … Akira, S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. NATURE IMMUNOLOGY, 6(11), 1087–1095. https://doi.org/10.1038/ni1255 Kishida, S., Sanjo, H., Akira, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2005). TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. GENES TO CELLS, 10(5), 447–454. https://doi.org/10.1111/j.1365-2443.2005.00852.x Safwat, N., Ninomiya-Tsuji, J., Gore, A. J., & Miller, W. L. (2005). Transforming growth factor beta-activated kinase 1 is a key mediator of ovine follicle-stimulating hormone beta-subunit expression. ENDOCRINOLOGY, 146(11), 4814–4824. https://doi.org/10.1210/en.2005-0457 Akiyama, S., Yonezawa, T., Kudo, T. A., Li, M. G., Wang, H., Ito, M., … Kobayashi, T. (2004). Activation mechanism of c-Jun amino-terminal kinase in the course of neural differentiation of P19 embryonic carcinoma cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 279(35), 36616–36620. https://doi.org/10.1074/jbc.M406610200 Takeda, K., Matsuzawa, A., Nishitoh, H., Tobiume, K., Kishida, S., Ninomiya‐Tsuji, J., … Ichijo, H. (2004). Involvement of ASK1 in Ca 2+ ‐induced p38 MAP kinase activation. EMBO Reports, 5(2), 161–166. https://doi.org/10.1038/sj.embor.7400072 Ono, K., Ohtomo, T., Ninomiya-Tsuji, J., & Tsuchiya, M. (2003). A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 307(2), 332–337. https://doi.org/10.1016/S0006-291X(03)01207-5 Ninomiya-Tsuji, J., Kajino, T., Ono, K., Ohtomo, T., Matsumoto, M., Shiina, M., … Matsumoto, K. (2003). A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. JOURNAL OF BIOLOGICAL CHEMISTRY, 278(20), 18485–18490. https://doi.org/10.1074/jbc.M207453200 Li, M. G., Katsura, K., Nomiyama, H., Komaki, K., Ninomiya-Tsuji, J., Matsumoto, K., … Tamura, S. (2003). Regulation of the interleukin-1-induced signaling pathways by a novel member of the protein phosphatase 2C family (PP2C epsilon). JOURNAL OF BIOLOGICAL CHEMISTRY, 278(14), 12013–12021. https://doi.org/10.1074/jbc.M211474200 Takaesu, G., Surabhi, R. M., Park, K. J., Ninomiya-Tsuji, J., Matsumoto, K., & Gaynor, R. B. (2003). TAK1 is critical for I kappa B kinase-mediated activation of the NF-kappa B pathway. JOURNAL OF MOLECULAR BIOLOGY, 326(1), 105–115. https://doi.org/10.1016/S0022-2836(02)01404-3 Komatsu, Y., Shibuya, H., Takeda, N., Ninomiya-Tsuji, J., Yasui, T., Miyado, K., … Yamada, G. (2002). Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. MECHANISMS OF DEVELOPMENT, 119(2), 239–249. https://doi.org/10.1016/S0925-4773(02)00391-X