@article{zhao_funni_molina_dickey_jones_2022, title={Inhomogeneous electric field-induced structural changes in soft lead zirconate titanate ferroelectric ceramics}, volume={226}, ISSN={["1873-2453"]}, url={https://app.dimensions.ai/details/publication/pub.1144897101}, DOI={10.1016/j.actamat.2022.117682}, abstractNote={Under the application of an external voltage, high electric field concentrations can develop around the interdigitated electrode edges inside multilayer ceramic actuators (MLCAs). The spatial distribution of the local electrical field can create local inhomogeneity in the electromechanical response. To investigate the complex field inhomogeneity in MLCAs, partially electroded Nb-doped PbZrxTi1-xO3 samples were investigated via synchrotron-based high-energy X-ray diffraction (XRD) as a function of applied electric field. These in situ experiments allowed us to probe the structural changes as a function of position relative to the electrode edge and calculate the local degree of domain alignment, from which the local electric field directions were inferred. The domain switching behavior, both in amplitude and orientation, was found to be spatially dependent across the inactive regions in partially electroded samples. Specifically, the degree of domain alignment and field-induced phase transitions are amplified near the electrode edge. The orientation-dependent phase transitions are also amplified for the tetragonal composition near the morphotropic phase boundary (MPB), i.e., the Nb-doped PbZr0.53Ti0.47O3 composition. Finite element analysis (FEA) shows spatially-dependent, inhomogeneous electric field distributions in the partial-electrode samples, which closely match the experimentally inferred local electric field directions from XRD. The correlation of FEA and experimental data from XRD corroborates that the ferroelectric domain orientation distributions are being directed, primarily, in the direction of the electric field.}, number={ARTN 117682}, journal={ACTA MATERIALIA}, author={Zhao, Jianwei and Funni, Stephen D. and Molina, Emily R. and Dickey, Elizabeth C. and Jones, Jacob L.}, year={2022}, month={Mar} } @article{zhao_funni_molina_dickey_jones_2021, title={Orientation-dependent, field-induced phase transitions in soft lead zirconate titanate piezoceramics}, volume={41}, ISSN={["1873-619X"]}, url={https://app.dimensions.ai/details/publication/pub.1134957541}, DOI={10.1016/j.jeurceramsoc.2021.01.043}, abstractNote={In situ high-energy X-ray diffraction (XRD) was performed on lead-zirconate-titanate-based ferroelectric materials with composition near the morphotropic phase boundary (MPB). The utilization of the two-dimensional area detector in in situ field-dependent experiments enables the complete analysis of the material response with respect to all azimuthal angles at each field amplitude. The studies reveal that the field-induced phase transition from tetragonal to rhombohedral is dependent on crystal orientation in Nb-doped PbZr0.53Ti0.47O3 that is in close compositional proximity to the MPB. However, only domain wall motion is activated in Nb-doped PbZr0.50Ti0.50O3, which is further in composition from the MPB. This synchrotron-based XRD characterization approach illustrates the importance in evaluating the orientation-dependence of phase transitions in piezoelectric and ferroelectric polycrystalline materials.}, number={6}, journal={JOURNAL OF THE EUROPEAN CERAMIC SOCIETY}, author={Zhao, Jianwei and Funni, Stephen D. and Molina, Emily R. and Dickey, Elizabeth C. and Jones, Jacob L.}, year={2021}, month={Jun}, pages={3357–3362} } @article{tutuncu_chen_fan_fancher_forrester_zhao_jones_2016, title={Domain wall and interphase boundary motion in (1-x)Bi(Mg0.5Ti0.5)O-3-xPbTiO(3) near the morphotropic phase boundary}, volume={120}, number={4}, journal={Journal of Applied Physics}, author={Tutuncu, G. and Chen, J. and Fan, L. L. and Fancher, C. M. and Forrester, J. S. and Zhao, J. W. and Jones, J. L.}, year={2016} }