@article{camacho_gannon_ahmed_mulvaney_heitman_amoozegar_leon_2022, title={Evaluation of imazapic and flumioxazin carryover risk for Carinata (Brassica carinata) establishment}, volume={5}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.27}, DOI={10.1017/wsc.2022.27}, abstractNote={Abstract}, journal={WEED SCIENCE}, publisher={Cambridge University Press (CUP)}, author={Camacho, Manuel E. and Gannon, Travis W. and Ahmed, Khalied A. and Mulvaney, Michael J. and Heitman, Joshua L. and Amoozegar, Aziz and Leon, Ramon G.}, year={2022}, month={May} } @article{haug_ahmed_gannon_richardson_2021, title={Absorption and translocation of florpyrauxifen-benzyl in ten aquatic plant species}, volume={69}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2021.38}, abstractNote={Abstract}, number={6}, journal={WEED SCIENCE}, author={Haug, Erika J. and Ahmed, Khalied A. and Gannon, Travis W. and Richardson, Rob J.}, year={2021}, month={Nov}, pages={624–630} } @article{stephens_kerns_ahmed_gannon_2021, title={Influence of post-application irrigation and mowing timing on fungicide fate on a United States Golf Association golf course putting green}, volume={6}, ISSN={["1537-2537"]}, DOI={10.1002/jeq2.20249}, abstractNote={Abstract}, journal={JOURNAL OF ENVIRONMENTAL QUALITY}, author={Stephens, Cameron M. and Kerns, James P. and Ahmed, Khalied A. and Gannon, Travis W.}, year={2021}, month={Jun} } @article{gannon_jeffries_ahmed_2017, title={Irrigation and Soil Surfactants Affect Abamectin Distribution in Soil}, volume={57}, ISSN={["1435-0653"]}, DOI={10.2135/cropsci2016.05.0320}, abstractNote={Nematodes are microscopic, soil‐dwelling organisms that adversely affect many turfgrass systems, including golf course putting greens. Abamectin controls many nematode species in golf course putting greens; however, high sorption to accumulated organic matter near the soil surface in established turfgrass systems may limit its distribution in soil, thereby limiting its efficacy. Field research was conducted on ‘A1/A4’ creeping bentgrass and ‘Champion’ ultradwarf bermudagrass putting greens to evaluate abamectin distribution in soil following treatment regimens including abamectin application (37 g a.i. ha–1) alone, or tank‐mixed with soil surfactant (Revolution) in tandem with various irrigation timings to promote downward distribution. Laboratory research was also conducted to evaluate 14C‐abamectin soil distribution via treatments comprised of various combinations of simulated irrigation amounts and timings, as well as soil surfactant type (Dispatch or Qualibra) and timing with respect to abamectin application. Abamectin distributed similarly in soil across turfgrass species in field research. At 7 d after treatment (DAT), all irrigation–soil surfactant regimens increased abamectin distribution to the 0‐ to 2.5‐cm soil depth compared with broadcast spray alone; however, no evaluated regimen resulted in >2% of the applied abamectin movement beyond 2.5 cm. In laboratory experiments, 14C‐abamectin soil distribution was affected most by soil surfactant at 3 DAT, with Qualibra increasing distribution (8.2 to 18.4% of applied) to 7.5 cm depth compared with Dispatch or no surfactant. As in field research, irrigation amounts and timings generally affected 14C‐abamectin similarly. This research highlights practices to enhance distribution into the profile, thereby increasing bioavailability and efficacy.}, number={2}, journal={CROP SCIENCE}, author={Gannon, Travis W. and Jeffries, Matthew D. and Ahmed, Khalied A.}, year={2017}, pages={573–580} } @article{jeffries_gannon_brosnan_ahmed_breeden_2016, title={Factors Influencing Dislodgeable 2, 4-D Plant Residues from Hybrid Bermudagrass (Cynodon dactylon L. x C. transvaalensis) Athletic Fields}, volume={11}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0148992}, abstractNote={Research to date has confirmed 2,4-D residues may dislodge from turfgrass; however, experiments have not been conducted on hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis), the most common athletic field turfgrass in subtropical climates. More specifically, previous research has not investigated the effect of post-application irrigation on dislodgeable 2,4-D residues from hybrid bermudagrass and across turfgrass species, research has been nondescript regarding sample time within a d (TWD) or conducted in the afternoon when the turfgrass canopy is dry, possibly underestimating potential for dislodgement. The effect of irrigation and TWD on 2,4-D dislodgeability was investigated. Dislodgeable 2,4-D amine was reduced > 300% following irrigation. From 2 to 7 d after treatment (DAT), ≤ 0.5% of applied 2,4-D was dislodged from irrigated turfgrass, while ≤ 2.3% of applied 2,4-D was dislodged when not irrigated. 2,4-D dislodgeability decreased as TWD increased. Dislodgeable 2,4-D residues declined to < 0.1% of the applied at 1 DAT– 13:00, and increased to 1 to 3% of the applied 2 DAT– 5:00, suggesting 2,4-D re-suspended on treated turfgrass vegetation overnight. In conclusion, irrigating treated turfgrass reduced dislodgeable 2,4-D. 2,4-D dislodgeability increased as TWD decreased, which was attributed to non-precipitation climatic conditions favoring turfgrass canopy wetness. This research will improve turfgrass management practices and research designed to minimize human 2,4-D exposure.}, number={2}, journal={PLOS ONE}, author={Jeffries, Matthew D. and Gannon, Travis W. and Brosnan, James T. and Ahmed, Khalied A. and Breeden, Gregory K.}, year={2016}, month={Feb} } @article{jeffries_yelverton_ahmed_gannon_2016, title={Persistence in and Release of 2,4-D and Azoxystrobin from Turfgrass Clippings}, volume={45}, ISSN={["1537-2537"]}, DOI={10.2134/jeq2016.03.0081}, abstractNote={Research has shown that pesticide residue in clippings from previously treated turfgrass may become bioavailable as grass decomposes, adversely affecting off‐target organisms. We conducted a field study to quantify 2,4‐D (2,4‐dichlorophenoxyacetic acid) and azoxystrobin (methyl(E)‐2‐{2[6‐(2‐cyanophenoxy)pyrmidin‐4‐yloxy]phenyl}‐3‐methoxyacrylate) residues in turfgrass clippings collected from hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt–Davy], tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbyshire], and zoysiagrass (Zoysia japonica Steud.). A subsequent greenhouse experiment was conducted to measure pesticide release from clippings into water. 2,4‐D (1.6 kg a.i. ha−1) and azoxystrobin (0.6 kg a.i. ha−1) were applied to field plots at 32, 16, 8, 4, 2, 1, or 0 d before collection of the clippings. Clippings were collected from each experimental unit to quantify pesticide release from clippings into water. Both 2,4‐D and azoxystrobin were detected when turfgrass was treated over the 32‐d experimental period, suggesting that clipping management should be implemented for an extended period of time after application. Pesticide residue was detected in all water samples collected, confirming 2,4‐D and azoxystrobin release from turfgrass clippings; however, pesticide release varied between compounds. Two days after clippings were incorporated in water, 39 and 10% of 2,4‐D and azoxystrobin were released from clippings, respectively. Our research supports the currently recommended practice of returning clippings to the turfgrass stand when mowing because removal of 2,4‐D and azoxystrobin in clippings may reduce pest control and cause adverse off‐target impacts.}, number={6}, journal={JOURNAL OF ENVIRONMENTAL QUALITY}, author={Jeffries, Matthew D. and Yelverton, Fred H. and Ahmed, Khalied A. and Gannon, Travis W.}, year={2016}, pages={2030–2037} }