@article{darling_chan_wong_semones_scattergood_koch_2008, title={Grain-size stabilization in nanocrystalline FeZr alloys}, volume={59}, ISSN={["1359-6462"]}, DOI={10.1016/j.scriptamat.2008.04.045}, abstractNote={Nanocrystalline Fe–Zr alloys with a nominal grain size of 10 nm were synthesized by mechanical alloying. The grain size in pure Fe was >200 nm after annealing for 1 h at T/TM = 0.5. Additions of 1 at.% Zr stabilized the grain size at 50 nm up to T/TM = 0.92. Particle pinning, solute drag and reduction in grain-boundary energy have been proposed as stabilization mechanisms. The stabilization in Fe–Zr alloys is attributed to a reduction in grain-boundary energy due to Zr segregation.}, number={5}, journal={SCRIPTA MATERIALIA}, author={Darling, Kris A. and Chan, Ryan N. and Wong, Patrick Z. and Semones, Jonathan E. and Scattergood, Ronald O. and Koch, Carl C.}, year={2008}, month={Sep}, pages={530–533} } @article{darling_reynolds_leonard_duscher_scattergood_koch_2008, title={Self-assembled three-dimensional Cu-Ge nanoweb composite}, volume={19}, ISSN={["1361-6528"]}, DOI={10.1088/0957-4484/19/13/135603}, abstractNote={The inexpensive combination of cryogenically milled Cu(3)Ge powders sonochemically processed in a standard ultrasonic cleaner has led to the prototype of a heretofore undescribed class of material. This prototype is a nanostructured composite composed of 4.5 nm diameter Cu nanocrystals embedded in a three-dimensional (3D) amorphous CuGeO(3) polyhedron web matrix. The diameters of the wires comprising the matrix are typically 5-15 nm. Complete structural and compositional characterization is reported to provide additional insight and firm designation on the observation of this previously undescribed class of material. The large surface to volume ratio of these nanoweb composites may offer unique advantages based on altered optical or electronic and magnetic properties. For example, quantum confinement of the Cu dots in the amorphous 3D nanowebs is possible. Nanostructures in general have altered properties compared to those of bulk materials and the same is expected in nanostructured composites.}, number={13}, journal={NANOTECHNOLOGY}, author={Darling, Kris A. and Reynolds, C. Lewis, Jr. and Leonard, Donovan N. and Duscher, Gerd and Scattergood, Ronald O. and Koch, Carl C.}, year={2008}, month={Apr} } @article{koch_scattergood_darling_semones_2008, title={Stabilization of nanocrystalline grain sizes by solute additions}, volume={43}, ISSN={["1573-4803"]}, DOI={10.1007/s10853-008-2870-0}, number={23-24}, journal={JOURNAL OF MATERIALS SCIENCE}, author={Koch, C. C. and Scattergood, R. O. and Darling, K. A. and Semones, J. E.}, year={2008}, month={Dec}, pages={7264–7272} } @article{darling_guduru_reynolds_bhosle_chan_scattergood_koch_narayan_aboelfotoh_2008, title={Thermal stability, mechanical and electrical properties of nanocrystalline Cu3Ge}, volume={16}, ISSN={0966-9795}, url={http://dx.doi.org/10.1016/j.intermet.2007.11.005}, DOI={10.1016/j.intermet.2007.11.005}, abstractNote={The intermetallic ɛ1 compound Cu3Ge was produced through a mechanical alloying procedure that enables the formation of a nanograined microstructure. There is a dependence of grain size (20–11 nm) on milling conditions. The microstructure remained very stable even at temperatures up to 500 °C for 5 h which is a minimum of 76% of the melting temperature. The materials produced by these methods were in the form of powders with particle size ranging from 200 nm to 10 μm. The morphology of the particles varied with the largest being rough and irregular and the smallest being spherical. Preliminary resistivity measurements showed low resistivity, 8.8 μΩ cm, which is comparable to that previously reported for thin films with grain sizes thousands of times larger. Nanoindentation was also performed, yielding an elastic modulus of ∼110 GPa.}, number={3}, journal={Intermetallics}, publisher={Elsevier BV}, author={Darling, Kris A. and Guduru, R.K. and Reynolds, C. Lewis, Jr and Bhosle, Vikram M. and Chan, Ryan N. and Scattergood, Ronald O. and Koch, Carl C. and Narayan, J. and Aboelfotoh, M.O.}, year={2008}, month={Mar}, pages={378–383} } @article{guduru_wong_darling_koch_murty_scattergood_2007, title={Determination of Activation Volume in Nanocrystalline Cu Using the Shear Punch Test}, volume={9}, ISSN={1438-1656 1527-2648}, url={http://dx.doi.org/10.1002/adem.200700181}, DOI={10.1002/adem.200700181}, abstractNote={Stress relaxation test (SRT) is very useful to study the dislocation dynamics and thus the deformation behavior. It becomes quite difficult to use conventional testing methods when the material availability is limited. In such instances, miniaturized specimen testing procedures such as shear punch test (SPT) becomes significantly useful for studying the mechanical behavior of materials. Current research deals with a novel SRT method employed on nanocrystalline Cu using SPT to study the deformation mechanism.}, number={10}, journal={Advanced Engineering Materials}, publisher={Wiley}, author={Guduru, R. K. and Wong, P. Z. and Darling, K. A. and Koch, C. C. and Murty, K. L. and Scattergood, R. O.}, year={2007}, month={Oct}, pages={855–859} } @article{guduru_darling_scattergood_koch_murty_2007, title={Mechanical properties of electrodeposited nanocrystalline copper using tensile and shear punch tests}, volume={42}, ISSN={["0022-2461"]}, DOI={10.1007/s10853-006-1095-3}, number={14}, journal={JOURNAL OF MATERIALS SCIENCE}, author={Guduru, Ramesh Kumar and Darling, Kristopher A. and Scattergood, Ronald O. and Koch, Carl C. and Murty, K. L.}, year={2007}, month={Jul}, pages={5581–5588} }