@misc{bautista_kim_xu_jiang_dayton_2023, title={Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis}, volume={49}, ISSN={["1879-291X"]}, DOI={10.1016/j.ultrasmedbio.2023.01.018}, abstractNote={Thrombosis in cardiovascular disease is an urgent global issue, but treatment progress is limited by the risks of current antithrombotic approaches. The cavitation effect in ultrasound-mediated thrombolysis offers a promising mechanical alternative for clot lysis. Further addition of microbubble contrast agents introduces artificial cavitation nuclei that can enhance the mechanical disruption induced by ultrasound. Recent studies have proposed sub-micron particles as novel sonothrombolysis agents with increased spatial specificity, safety and stability for thrombus disruption. In this article, the applications of different sub-micron particles for sonothrombolysis are discussed. Also reviewed are in vitro and in vivo studies that apply these particles as cavitation agents and as adjuvants to thrombolytic drugs. Finally, perspectives on future developments in sub-micron agents for cavitation-enhanced sonothrombolysis are shared.}, number={5}, journal={ULTRASOUND IN MEDICINE AND BIOLOGY}, author={Bautista, Kathlyne Jayne B. and Kim, Jinwook and Xu, Zhen and Jiang, Xiaoning and Dayton, Paul A.}, year={2023}, month={May}, pages={1049–1057} } @article{belekov_bautista_annayev_adelegan_biliroglu_kierski_sanders_kemal_sennik_yamaner_et al._2022, title={Performance Assessment of Ultra-Wideband and Dual-Mode 1D CMUT Arrays for Acoustic Angiography}, ISSN={["1948-5719"]}, DOI={10.1109/IUS54386.2022.9958537}, abstractNote={In this work, we have demonstrated the imaging potential of 256-element ultra-wideband (UWB) and dual-mode CMUT 1D arrays for acoustic angiography through mechanical index measurements and in-vitro imaging experiments. We have designed a custom 256-channel imaging probe with integrated low-noise amplifiers and supporting power circuitry. To improve the elevational focusing, we mounted an acoustic lens on to the array. The acoustic characterization of the CMUT array was performed by a calibrated hydrophone, with which we measured sufficiently high mechanical indices (i.e., 0.79 MI for the UWB and 0.85 MI for the dual-mode array) at the focal spot at 15-mm depth. We conducted an imaging experiment with a tissue-mimicking phantom including a 0.2-mm-diameter cellulose tube, in which microbubbles and water flowed. We demonstrated a CTR of 62.12 ± 1.06 dB for the UWB array and a CTR of 59.69 ± 0.39 dB for the dual-mode array when microbubbles were flowing through the tube. These experiments presented a strong use case for the UWB and dual-mode CMUT arrays in acoustic angiography applications.}, journal={2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS)}, author={Belekov, Ermek and Bautista, Kathlyne J. and Annayev, Muhammetgeldi and Adelegan, Oluwafemi J. and Biliroglu, Ali O. and Kierski, Thomas M. and Sanders, Jean L. and Kemal, Remzi E. and Sennik, Erdem and Yamaner, Feysel Y. and et al.}, year={2022} } @article{kim_bautista_deruiter_goel_jiang_xu_dayton_2022, title={An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets}, volume={69}, ISSN={["1525-8955"]}, DOI={10.1109/TUFFC.2021.3137125}, abstractNote={The thrombolysis potential of low-boiling-point (−2 °C) perfluorocarbon phase-change nanodroplets (NDs) has previously been demonstrated on aged clots, and we hypothesized that this efficacy would extend to retracted clots. We tested this hypothesis by comparing sonothrombolysis of both unretracted and retracted clots using ND-mediated ultrasound (US+ND) and microbubble-mediated ultrasound (US+MB), respectively. Assessment data included clot mass reduction, cavitation detection, and cavitation cloud imaging in vitro. Acoustic parameters included a 7.9-MPa peak negative pressure and 180-cycle bursts with 5-Hz repetition (the corresponding duty cycle and time-averaged intensity of 0.09% and 1.87 W/cm2, respectively) based on prior studies. With these parameters, we observed a significantly reduced efficacy of US+MB in the retracted versus unretracted model (the averaged mass reduction rate from 1.83%/min to 0.54%/min). Unlike US+MB, US+ND exhibited less reduction of efficacy in the retracted model (from 2.15%/min to 1.04%/min on average). The cavitation detection results correlate with the sonothrombolysis efficacy results showing that both stable and inertial cavitation generated in a retracted clot by US+ND is higher than that by US+MB. We observed that ND-mediated cavitation shows a tendency to occur inside a clot, whereas MB-mediated cavitation occurs near the surface of a retracted clot, and this difference is more significant with retracted clots compared to unretracted clots. We conclude that ND-mediated sonothrombolysis outperforms MB-mediated therapy regardless of clot retraction, and this advantage of ND-mediated cavitation is emphasized for retracted clots. The primary mechanisms are hypothesized to be sustained cavitation level and cavitation clouds in the proximity of a retracted clot by US+ND.}, number={2}, journal={IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL}, author={Kim, Jinwook and Bautista, Kathlyne Jayne B. and Deruiter, Ryan M. and Goel, Leela and Jiang, Xiaoning and Xu, Zhen and Dayton, Paul A.}, year={2022}, month={Feb}, pages={711–719} }