@article{ghaffari_kashani_do_weninger_riehn_2023, title={A nanophotonic interferometer}, volume={34}, ISSN={["1361-6528"]}, url={https://doi.org/10.1088/1361-6528/acb443}, DOI={10.1088/1361-6528/acb443}, abstractNote={Abstract}, number={18}, journal={NANOTECHNOLOGY}, author={Ghaffari, Abbas and Kashani, Somayeh and Do, Kevin and Weninger, Keith and Riehn, Robert}, year={2023}, month={Apr} } @article{ghaffari_do_kashani_weninger_riehn_2022, title={A Nanophotonic Interferometer for small particle detection}, volume={12223}, ISBN={["978-1-5106-5430-3"]}, ISSN={["1996-756X"]}, DOI={10.1117/12.2634318}, abstractNote={The transmission of light through sub-wavelength apertures (zero-mode waveguides, ZMW) in metal films is wellexplored. It introduces both an amplitude modulation as well as a phase shift to the transmitted oscillating electromagnetic field. We propose a nanophotonic interferometer by bringing two zero-mode waveguides in proximity and monitoring the distribution of light in the back-focal plane of the collecting microscope objective. We demonstrate that both an asymmetry induced by the binding of a quantum dot in one of the two ZMW, as well as a asymmetry in ZMW diameter yield qualitatively similar deflection patterns. Using ZMW pairs with diameter asymmetries, we find that the complex pattern of the transmitted light can be quantified through a scalar measure of asymmetry along the symmetry axis of the aperture pair. We find that this scalar asymmetry is a monotonous function of the diameter difference of the two apertures.}, journal={INTERFEROMETRY XXI}, author={Ghaffari, A. and Do, K. and Kashani, S. and Weninger, K. and Riehn, Robert}, year={2022} }