@article{yildiz_dirican_fang_fu_jia_stano_zhang_bradford_2019, title={Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes}, volume={166}, ISSN={["1945-7111"]}, url={https://publons.com/publon/26924627/}, DOI={10.1149/2.0821902jes}, abstractNote={Silicon is one of the most promising anode materials for lithium-ion batteries because of its highest known theoretical charge capacity (4,200 mAh g−1). However, it has found limited application in commercial batteries because of the significant volume change (up to 400%) of silicon during cycling, which results in pulverization and capacity fading. Here, we present a new method to develop a silicon - carbon nanotube (CNT) hybrid anode architecture using CNT-polymer nanofiber hybridization method. The anode material is produced by electrospinning PMMA-Si nanofibers onto aligned CNT sheets, which are drawn on a grounded, rotating take-up roller, and then subsequently decomposing the PMMA electrospun fibers at elevated temperature to create a uniform distribution of Si particles within the CNT sheets. The whole structure is then coated with pyrolytic carbon via chemical vapor deposition (CVD). The architecture provides sufficient space to accommodate the volume expansion of the Si nanoparticles. The CVD pyrolytic carbon coating helps to anchor the Si nanoparticles within CNT sheets and stabilize solid-electrolyte-interface (SEI) formation. The novel freestanding, binder free CNT-Si-C sheet hybrid exhibited improved performance in terms of excellent cycling capacity (1470 mAh g−1), high coulombic efficiency (98%), and good capacity retention of 88% after 150 cycles.}, number={4}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Yildiz, Ozkan and Dirican, Mahmut and Fang, Xiaomeng and Fu, Kun and Jia, Hao and Stano, Kelly and Zhang, Xiangwu and Bradford, Philip D.}, year={2019}, month={Feb}, pages={A473–A479} } @article{lu_fu_zhu_chen_yanilmaz_dirican_ge_jiang_zhang_2016, title={Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition}, volume={51}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924656/}, DOI={10.1007/s10853-016-9768-z}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Lu, Yao and Fu, Kun and Zhu, Jiadeng and Chen, Chen and Yanilmaz, Meltem and Dirican, Mahmut and Ge, Yeqian and Jiang, Han and Zhang, Xiangwu}, year={2016}, month={May}, pages={4549–4558} } @article{zhu_yanilmaz_fu_chen_lu_ge_kim_zhang_2016, title={Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries}, volume={504}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924654/}, DOI={10.1016/j.memsci.2016.01.020}, abstractNote={Glass fiber (GF) membrane is evaluated as a potential separator for lithium–sulfur batteries. It is found that GF membrane has a highly porous structure with superior thermal stability, resulting in high liquid electrolyte uptake and enhanced electrochemical performance. Li–S cells using GF membrane as the separator can retain a capacity of 617 mA h g−1 after 100 cycles at a current density of 0.2 C, which is 42% higher than that of cells using commercial microporous polypropylene separator. During rate capability tests, the capacity of Li–S cells using GF membrane decreases slowly from the reversible capacity of 616 mA h g−1 at 0.2 C to 505, 394 and 262 mA h g−1 at 0.5 C, 1 C, and 2 C, respectively. It should be noted that these cells can still deliver a high capacity of 587 mA h g−1 with a high retention of 95% when the current density is lowered back to 0.2 C. The improved cycling and rate performance are ascribed to the fact that the highly porous GF membrane can increase the intake of soluble polysulfide intermediates and slow down their rapid diffusion to the Li anode side, which can not only improve the utilization of active material, but help protect the Li anode surface as well.}, journal={JOURNAL OF MEMBRANE SCIENCE}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Yanilmaz, Meltem and Fu, Kun and Chen, Chen and Lu, Yao and Ge, Yeqian and Kim, David and Zhang, Xiangwu}, year={2016}, month={Apr}, pages={89–96} } @article{lu_fu_zhang_li_chen_zhu_yanilmaz_dirican_zhang_2015, title={Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors}, volume={273}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.09.130}, DOI={10.1016/j.jpowsour.2014.09.130}, abstractNote={Carbon nanofibers (CNFs), among various carbonaceous candidates for electric double-layer capacitor (EDLC) electrodes, draw extensive attention because their one-dimensional architecture offers both shortened electron pathways and high ion-accessible sites. Creating porous structures on CNFs yields larger surface area and enhanced capacitive performance. Herein, porous carbon nanofibers (PCNFs) were synthesized via centrifugal spinning of polyacrylonitrile (PAN)/poly(methyl methacrylate) (PMMA) solutions combined with thermal treatment and were used as binder-free EDLC electrodes. Three precursor fibers with PAN/PMMA weight ratios of 9/1, 7/3 and 5/5 were prepared and carbonized at 700, 800, and 900 °C, respectively. The highest specific capacitance obtained was 144 F g−1 at 0.1 A g−1 with a rate capability of 74% from 0.1 to 2 A g−1 by PCNFs prepared with PAN/PMMA weight ratio of 7/3 at 900 °C. These PCNFs also showed stable cycling performance. The present work demonstrates that PCNFs are promising EDLC electrode candidate and centrifugal spinning offers a simple, cost-effective strategy to produce PCNFs.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Lu, Yao and Fu, Kun and Zhang, Shu and Li, Ying and Chen, Chen and Zhu, Jiadeng and Yanilmaz, Meltem and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Jan}, pages={502–510} } @article{jiang_ge_fu_lu_chen_zhu_dirican_zhang_2015, title={Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries}, volume={50}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924667/}, DOI={10.1007/s10853-014-8666-5}, number={3}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Jiang, Han and Ge, Yeqian and Fu, Kun and Lu, Yao and Chen, Chen and Zhu, Jiadeng and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Feb}, pages={1094–1102} } @article{zhu_chen_lu_ge_jiang_fu_zhang_2015, title={Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries}, volume={94}, ISSN={["1873-3891"]}, url={https://publons.com/publon/26924672/}, DOI={10.1016/j.carbon.2015.06.076}, abstractNote={Nitrogen-doped carbon nanofibers (N-CNFs) derived from polyacrylonitrile were successfully synthesized by a combination of electrospinning and thermal treatment processes. The as-prepared N-CNFs were used as anode material for sodium-ion batteries due to their unique fabric and weakly-ordered turbostratic structure as well as large spacing between graphene layers. Results show that N-CNFs carbonized at 800 °C delivered a high reversible capacity of 293 mAh g−1 at a current density of 50 mA g−1 in the first cycle. Even though the first-cycle Coulombic efficiency was 64%, it increased to nearly 100% only after a few initial cycles. Additionally, these N-CNFs showed excellent cycling and high-rate performance, and maintained a capacity of up to 150 mAh g−1 even at an extremely high current density of 1000 mA g−1 for over 200 cycles. It is, therefore, demonstrated that N-CNFs prepared under appropriate conditions are promising anode material candidate for sodium-ion batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Xiangwu}, year={2015}, month={Nov}, pages={189–195} } @article{dirican_lu_fu_kizil_zhang_2015, title={SiO2-confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries}, volume={5}, ISSN={["2046-2069"]}, url={https://publons.com/publon/20548465/}, DOI={10.1039/c5ra03129j}, abstractNote={A nanoscale silica coating of silicon/carbon nanofibers enabled stable solid electrolyte interphase formation on an electrode surface and improved cycling performance.}, number={44}, journal={RSC ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Dirican, Mahmut and Lu, Yao and Fu, Kun and Kizil, Huseyin and Zhang, Xiangwu}, year={2015}, pages={34744–34751} } @article{chen_fu_lu_zhu_xue_hu_zhang_2015, title={Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries}, volume={5}, ISSN={["2046-2069"]}, url={https://publons.com/publon/26924669/}, DOI={10.1039/c5ra01729g}, abstractNote={A tin antimony alloy-filled porous carbon nanofiber composite prepared by electrospinning exhibited high capacity and stable rate capability for use as an anode material in next-generation sodium-ion batteries.}, number={39}, journal={RSC ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Chen, Chen and Fu, Kun and Lu, Yao and Zhu, Jiadeng and Xue, Leigang and Hu, Yi and Zhang, Xiangwu}, year={2015}, pages={30793–30800} } @misc{lee_yanilmaz_toprakci_fu_zhang_2014, title={A review of recent developments in membrane separators for rechargeable lithium-ion batteries}, volume={7}, ISSN={["1754-5706"]}, url={https://publons.com/publon/674379/}, DOI={10.1039/c4ee01432d}, abstractNote={The separator of a lithium-ion battery prevents the direct contact between the positive and negative electrodes while serving as the electrolyte reservoir to enable the transportation of lithium ions between the two electrodes.}, number={12}, journal={ENERGY & ENVIRONMENTAL SCIENCE}, publisher={Royal Society of Chemistry (RSC)}, author={Lee, Hun and Yanilmaz, Meltem and Toprakci, Ozan and Fu, Kun and Zhang, Xiangwu}, year={2014}, pages={3857–3886} } @article{dirican_yanilmaz_fu_yildiz_kizil_hu_zhang_2014, title={Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries}, volume={161}, ISSN={["1945-7111"]}, url={https://publons.com/publon/20548471/}, DOI={10.1149/2.0811414jes}, abstractNote={component of the composite anodes provided sufficient buffer function toaccommodate the volume expansion of the Si nanoparticles and the CVD amorphous carbon coating helped maintain the Sinanoparticleswithinthecarbonnanofibermatrixduringrepetitivecharginganddischargingprocesses.Electrochemicalperformancetests showed that the capacity retention of CVD carbon-coated Si/SiO}, number={14}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, publisher={The Electrochemical Society}, author={Dirican, Mahmut and Yanilmaz, Meltem and Fu, Kun and Yildiz, Ozkan and Kizil, Huseyin and Hu, Yi and Zhang, Xiangwu}, year={2014}, pages={A2197–A2203} } @article{dirican_yanilmaz_fu_lu_kizil_zhang_2014, title={Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries}, volume={264}, ISSN={["1873-2755"]}, url={https://publons.com/publon/20548470/}, DOI={10.1016/j.jpowsour.2014.04.102}, abstractNote={Tin oxides (SnO2) are promising anode material candidate for next-generation lithium-ion batteries due to their high capacity, low cost, high abundance, and low toxicity. However, the practical use of SnO2 anodes is currently limited by their large volume changes during cycling. Severe volume changes of SnO2 anodes lead to intense pulverization and loss of electrical contact between the active material and carbon conductor. Herein, we introduce binder-free SnO2-electrodeposited carbon nanofibers (CNF@SnO2) and SnO2-electrodeposited porous carbon nanofibers (PCNF@SnO2) composites that can maintain their structural stability during repeated charge–discharge cycling. Results indicated that the amount of the electrodeposited SnO2 nanoparticles and the capacity of the resultant composites were successfully enhanced by using a porous nanofiber structure. Both CNF@SnO2 and PCNF@SnO2 composites were also coated with amorphous carbon layers by chemical vapor deposition to further improve the structural stability. Electrochemical performance results demonstrated that the combination of porous nanofiber structure and CVD amorphous coating led to a novel carbon-coated PCNF@SnO2 composite anode with high capacity retention of 78% and large coulombic efficiency of 99.8% at the 100th cycle.}, journal={JOURNAL OF POWER SOURCES}, author={Dirican, Mahmut and Yanilmaz, Meltem and Fu, Kun and Lu, Yao and Kizil, Huseyin and Zhang, Xiangwu}, year={2014}, month={Oct}, pages={240–247} } @article{fu_lu_dirican_chen_yanilmaz_shi_bradford_zhang_2014, title={Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries}, volume={6}, ISSN={["2040-3372"]}, url={https://publons.com/publon/26924684/}, DOI={10.1039/c4nr00518j}, abstractNote={Silicon is confined within the empty chambers of carbon nanofibers, in which the volume expansion of Si can be buffered and SEI formation is controlled. This self-supported composite is a promising electrode candidate for use in flexible batteries.}, number={13}, journal={NANOSCALE}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Lu, Yao and Dirican, Mahmut and Chen, Chen and Yanilmaz, Meltem and Shi, Quan and Bradford, Philip D. and Zhang, Xiangwu}, year={2014}, pages={7489–7495} } @article{li_chen_fu_xue_zhao_zhang_hu_zhou_zhang_2014, title={Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries}, volume={254}, ISSN={["1872-7689"]}, url={https://publons.com/publon/26924681/}, DOI={10.1016/j.ssi.2013.10.063}, abstractNote={Alloy anodes (Si, Ge and Sn) electrospun into carbon nanofibers as binder-free electrodes were synthesized and studied for rechargeable lithium-ion batteries. Alloy anode materials suffer from serious volume changes and nanoparticle aggregations during lithium insertion and extraction, resulting in rapid pulverization and capacity loss. Carbon nanofibers could help preserve the alloy anode materials during repeated cycling, and consequently maintain the cycling stability. In this work, it was found that with the increase in the amount of Si, Ge and Sn, the cycling stability was decreased due to the formation of large clusters within the carbon nanofiber matrix. Compared with Si/carbon nanofibers, Ge/carbon and Sn/carbon exhibited better cycling performance due to their improved nanoparticle distribution and smaller volume changes. The failure mechanism of the Si/carbon structure was explained in this article. It is believed that this study on Si/carbon, Ge/carbon and Sn/carbon composite nanofiber electrodes could help in designing alloy-based carbon composites with various structures for advanced lithium-ion batteries.}, journal={SOLID STATE IONICS}, publisher={Elsevier BV}, author={Li, Shuli and Chen, Chen and Fu, Kun and Xue, Leigang and Zhao, Chengxin and Zhang, Shu and Hu, Yi and Zhou, Lan and Zhang, Xiangwu}, year={2014}, month={Jan}, pages={17–26} } @article{ge_jiang_fu_zhang_zhu_chen_lu_qiu_zhang_2014, title={Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries}, volume={272}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.08.131}, DOI={10.1016/j.jpowsour.2014.08.131}, abstractNote={Lithium titanium oxide (Li4Ti5O12) is a promising anode material, owing to its superior safety and reliability. However, the main challenge of Li4Ti5O12 is the low material conductivity which restricts its electrochemical performance. In order to use Li4Ti5O12 in practical sodium-ion batteries, copper-doped Li4Ti5O12 (Li4−xCuxTi5O12, x = 0, 0.05, 0.1) nanoparticles were prepared to enhance the electronic conductivity. Copper-doped Li4Ti5O12 nanoparticles were then embedded in continuous carbon nanofibers (CNFs), which gave rise to fast electron transfer along the fiber direction. After copper-doping and CNF embedding, the resultant copper-doped Li4Ti5O12/CNFs achieved excellent reversible capacity (158.1 mAh g−1) at 30 mA g−1, high coulombic efficiency (99.87%), and good capacity retention (91%) after 150 cycles. In addition, copper-doped Li4Ti5O12/CNFs also exhibited good rate capability. It is, therefore, demonstrated that copper-doped Li4Ti5O12/CNFs are promising anode candidate.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Changhuan and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Qiu, Yiping and Zhang, Xiangwu}, year={2014}, month={Dec}, pages={860–865} } @article{yanilmaz_lu_dirican_fu_zhang_2014, title={Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques}, volume={456}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924682/}, DOI={10.1016/j.memsci.2014.01.022}, abstractNote={Nanoparticle-on-nanofiber hybrid membranes were prepared by electrospraying of SiO2 dispersions and electrospinning of polyvinylidene fluoride (PVDF) solution simultaneously. The aim of this study was to design new high-performance separator membranes with superior electrochemical properties such as high C-rate performance and good thermal stability compared to polyolefin based membranes. Uniform, bead-free fibrous structure with high amount of SiO2 nanoparticles exposed on PVDF nanofiber surfaces was observed. It was found that wettability and ionic conductivity were improved by dispersing SiO2 nanoparticles onto PVDF nanofiber surfaces. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. Compared with commercial microporous polyolefin membranes, SiO2/PVDF hybrid membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF hybrid membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. In addition, cells using SiO2/PVDF hybrid membrane separators showed superior C-rate performance compared to those using commercial microporous PP membrane.}, journal={JOURNAL OF MEMBRANE SCIENCE}, author={Yanilmaz, Meltem and Lu, Yao and Dirican, Mahmut and Fu, Kun and Zhang, Xiangwu}, year={2014}, month={Apr}, pages={57–65} } @article{li_chen_fu_white_zhao_bradford_zhang_2014, title={Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries}, volume={253}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11652066/}, DOI={10.1016/j.jpowsour.2013.12.017}, abstractNote={Three distinct Ge nanoparticle-filled carbon nanofiber (CNF) composites, [email protected], [email protected]@CNF and [email protected]@C, were fabricated by chemical vapor deposition (CVD) and electrospinning techniques. These different structures were prepared by: 1) dispersing Ge nanoparticles into CNF, 2) adding carbon-coated Ge nanoparticles ([email protected]) prepared by CVD into CNF, and 3) depositing CVD carbon onto [email protected], respectively. Compared with the [email protected] composite, both [email protected]@CNF and [email protected]@C had additional amorphous carbon coating fabricated by the CVD method. The three composites were studied as binder-free electrodes for rechargeable lithium-ion batteries. Raw Ge anode materials suffered from serious volume changes and nanoparticle aggregations during cycling, resulting in pulverization and capacity loss. However, carbon nanofiber and the supplemental CVD carbon layer in these nanofiber composites could help preserve the structural integrity of the alloy anode materials during repeated cycling, and consequently, lead to improved cycling stability. In this work, it was found that among the three composites, [email protected]@C exhibited the highest capacity retention of 89% at the 50th cycle due to the structurally-durable thorn-like Ge morphology and the additional CVD carbon confinement. [email protected] and [email protected]@CNF encountered rapid capacity loss because large Ge clusters were formed and jeopardized the integrity of the electrode structure during cycling.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Shuli and Chen, Chen and Fu, Kun and White, Ryan and Zhao, Chengxin and Bradford, Philip D. and Zhang, Xiangwu}, year={2014}, month={May}, pages={366–372} } @article{li_hu_lu_zhang_xu_fu_li_chen_zhou_xia_et al._2014, title={One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries}, volume={254}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11754003/}, DOI={10.1016/j.jpowsour.2013.12.044}, abstractNote={One-dimensional silicon oxycarbide (SiOC)/C composite nanofibers were fabricated by electrospinning and subsequent heat treatment. Introducing carbon matrix to SiOC anode material is an efficient way to accommodate the large volume changes during cycling and also increase the amount of free carbon, which is beneficial for improving the reversible capacity. These SiOC/C composite nanofibers form free-standing conductive membranes that can be used directly as battery electrodes without adding carbon black or polymer binder. Results show that after 80 cycles, the discharge capacity of SiOC/C composite nanofiber anodes is 70% higher than that of Si/C nanofiber anodes and more than 1.5 times larger than those of commercial anodes made from graphite. It is, therefore, demonstrated that one-dimensional SiOC/C nanofibers are promising anode material with large capacities and good cycling stability.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Ying and Hu, Yi and Lu, Yao and Zhang, Shu and Xu, Guanjie and Fu, Kun and Li, Shuli and Chen, Chen and Zhou, Lan and Xia, Xin and et al.}, year={2014}, month={May}, pages={33–38} } @article{fu_li_dirican_chen_lu_zhu_li_cao_bradford_zhang_et al._2014, title={Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries}, volume={50}, ISSN={["1364-548X"]}, url={https://publons.com/publon/26924687/}, DOI={10.1039/c4cc04970e}, abstractNote={A novel sulfur gradient cathode was developed with a high specific capacity and improved cycling stability for Li–S batteries.}, number={71}, journal={CHEMICAL COMMUNICATIONS}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Li, Yanpeng and Dirican, Mahmut and Chen, Chen and Lu, Yao and Zhu, Jiadeng and Li, Yao and Cao, Linyou and Bradford, Philip D. and Zhang, Xiangwu and et al.}, year={2014}, pages={10277–10280} } @article{xue_xia_tucker_fu_zhang_li_zhang_2013, title={A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability}, volume={1}, ISSN={["2050-7496"]}, url={https://publons.com/publon/7178344/}, DOI={10.1039/c3ta12921g}, abstractNote={The practical use of high-capacity anodes in lithium-ion batteries generally suffers from significant volume changes upon lithium insertion and extraction. The volume changes induce cracks and loss of inter-particle electronic contact in the electrode, resulting in rapid capacity decay. The use of fiber-like materials to prevent cracks and accommodate volume changes is widely observed in many animal and human activities. Birds mix grass and feathers into mud to build nests, and humans in ancient times blended straw with mud to produce adobe bricks for housing construction. In view of this point, this research designed a porous nanofiber structure to resolve the unstable structure problem of anode materials. The three-dimensional network structure composed of nanofibers provides a highly elastic matrix to accommodate the volume changes of high-capacity Sn and Sb particles and pores around the active particles, induced by CO2 evolution, serve as an additional buffer zone for the volume changes. This unique structure prepared by using a new SnSb alloy precursor and a simple electrospinning technique leads to excellent lithium storage performance in terms of energy density, cycling stability, and rate capability.}, number={44}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, author={Xue, Leigang and Xia, Xin and Tucker, Telpriore and Fu, Kun and Zhang, Shu and Li, Shuli and Zhang, Xiangwu}, year={2013}, pages={13807–13813} } @article{fu_yildiz_bhanushali_wang_stano_xue_zhang_bradford_2013, title={Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes}, volume={25}, ISSN={["1521-4095"]}, url={https://publons.com/publon/7178364/}, DOI={10.1002/adma.201301920}, abstractNote={Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.}, number={36}, journal={ADVANCED MATERIALS}, publisher={Wiley}, author={Fu, Kun and Yildiz, Ozkan and Bhanushali, Hardik and Wang, Yongxin and Stano, Kelly and Xue, Leigang and Zhang, Xiangwu and Bradford, Philip D.}, year={2013}, month={Sep}, pages={5109–5114} } @article{xue_xu_li_li_fu_shi_zhang_2013, title={Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries}, volume={5}, ISSN={["1944-8252"]}, url={https://publons.com/publon/1792840/}, DOI={10.1021/am3027597}, abstractNote={Si has the highest theoretical capacity among all known anode materials, but it suffers from the dramatic volume change upon repeated lithiation and delithiation processes. To overcome the severe volume changes, Si nanoparticles were first coated with a polymer-driven carbon layer, and then dispersed in a CNT network. In this unique structure, the carbon layer can improve electric conductivity and buffer the severe volume change, whereas the tangled CNT network is expected to provide additional mechanical strength to maintain the integrity of electrodes, stabilize the electric conductive network for active Si, and eventually lead to better cycling performance. Electrochemical test result indicates the carbon-coated Si nanoparticles dispersed in CNT networks show capacity retention of 70% after 40 cycles, which is much better than the carbon-coated Si nanoparticles without CNTs.}, number={1}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Xue, Leigang and Xu, Guanjie and Li, Ying and Li, Shuli and Fu, Kun and Shi, Quan and Zhang, Xiangwu}, year={2013}, month={Jan}, pages={21–25} } @inproceedings{li_fu_xue_toprakci_li_zhang_xu_lu_zhang_2013, title={Co3O4/carbon composite nanofibers for use as anode material in advanced lithium-ion batteries}, volume={1140}, url={https://publons.com/publon/7178343/}, DOI={10.1021/bk-2013-1140.ch003}, abstractNote={Co3O4/carbon composite nanofibers were prepared by a combination of electrospinning and carbonization methods using 10 - 30 nm and 30 - 50 nm Co3O4 nanoparticles, respectively, and their potential use as the anode material in rechargeable lithium-ion batteries was investigated. The composite Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles showed large reversible capacities and good cycleability with charge capacities of 677 and 545 mAh g-1 at the second and twentieth cycles, respectively. In contrast, the composite Co3O4/carbon nanofiber electrode containing 10 - 30 nm Co3O4 nanoparticles showed fast capacity fading during cycling due to severe nanoparticle aggregation. Results suggested that the good electrochemical performance of Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles was ascribed to the combination of the properties of both Co3O4 nanoparticles (large Li storage capability) and carbon nanofiber matrix (long cycle life), and therefore this electrode material could be potentially used in high-energy rechargeable lithium-ion batteries.}, booktitle={Nanotechnology for sustainable energy}, author={Li, S. L. and Fu, K. and Xue, L. G. and Toprakci, O. and Li, Y. and Zhang, S. and Xu, G. J. and Lu, Y. and Zhang, Xiangwu}, year={2013}, pages={55–66} } @article{fu_xue_yildiz_li_lee_li_xu_zhou_bradford_zhang_et al._2013, title={Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries}, volume={2}, ISSN={["2211-3282"]}, url={https://publons.com/publon/7178363/}, DOI={10.1016/j.nanoen.2013.03.019}, abstractNote={Lithium-ion battery (LIB) anodes with high capacity and binder free structure were synthesized from carbon nanofibers that contained silicon nanoparticles (Si@CNF). The particle filled nonwoven structures were produced by an electrospinning and subsequent carbonization process. Pristine Si@CNF composites had Si nanoparticles exposed on the fiber surface. As produced, the Si nanoparticles could become detached from the nanofiber surface during cycling, causing severe structural damage and capacity loss. In order to prevent Si from detaching from the nanofiber surface, the Si@CNF composite was then treated with a thermal chemical vapor deposition (CVD) technique to make Si completely coated with a carbon matrix. The carbon coated Si@CNF (Si@CNF-C) composites were synthesized with different Si contents (10, 30, and 50 wt%) for different CVD treatment times (30, 60, and 90 min). It was found that the initial coulombic efficiency of Si@CNF-C could be increased via the amorphous carbon by stabilizing solid-electrolyte-interface (SEI) formation on surface. The capacity and cyclic stability were improved by the CVD carbon coating, especially for the 30 wt% Si@CNF-C composite with 90 min CVD coating, a CVD amorphous carbon coating of less than 1% by weight on Si@CNF composites contributed to more than 200% improvement in cycling performance. Results indicate that the CVD carbon coating is an effective approach to improve the electrochemical properties of Si@CNF composites making this a potential route to obtain high-energy density anode materials for LIBs.}, number={5}, journal={NANO ENERGY}, author={Fu, K. and Xue, L. G. and Yildiz, O. and Li, S. L. and Lee, H. and Li, Y. and Xu, G. J. and Zhou, L. and Bradford, P. D. and Zhang, Xiangwu and et al.}, year={2013}, month={Sep}, pages={976–986} } @article{li_xue_fu_xia_zhao_zhang_2013, title={High-performance Sn/Carbon Composite Anodes Derived from Sn(II) Acetate/Polyacrylonitrile Precursors by Electrospinning Technology}, volume={17}, ISSN={["1385-2728"]}, url={https://publons.com/publon/7178342/}, DOI={10.2174/1385272811317130011}, abstractNote={Sn/carbon composite nanofibers with various compositions were prepared from Sn(II) acetate/polyacrylonitrile (PAN) precursors by a combination of electrospinning and carbonization methods, and their potential use as anode materials for rechargeable lithiumion batteries was investigated. The composite electrode derived from 20 wt% Sn(II) acetate/PAN precursor showed excellent electrochemical properties, including a large reversible capacity of 699 mAh g-1 and a high capacity retention of 83% in 50 cycles. Sn/carbon composite nanofibers exhibited enhanced electrochemical performance ascribing to the combination of the properties of both Sn nanoparticles (large Li storage capability) and carbon matrices (long cycle life), and therefore could be potentially used in high-energy rechargeable lithium-ion batteries.}, number={13}, journal={CURRENT ORGANIC CHEMISTRY}, author={Li, Shuli and Xue, Leigang and Fu, Kun and Xia, Xin and Zhao, Chengxin and Zhang, Xiangwu}, year={2013}, month={Jul}, pages={1448–1454} } @article{lu_li_zhang_xu_fu_lee_zhang_2013, title={Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process}, volume={49}, ISSN={["1873-1945"]}, url={https://publons.com/publon/7178360/}, DOI={10.1016/j.eurpolymj.2013.09.017}, abstractNote={Electrospinning is currently the most popular method for producing polymer nanofibers. However, the low production rate and safety concern limit the practical use of electrospinning as a cost-effective nanofiber fabrication approach. Herein, we present a novel and simple centrifugal spinning technology that extrudes nanofibers from polymer solutions by using a high-speed rotary and perforated spinneret. Polyacrylonitrile (PAN) nanofibers were prepared by selectively varying parameters that can affect solution intrinsic properties and operational conditions. The resultant PAN nanofibers were characterized by SEM, and XRD. The correlation between fiber morphology and processing conditions was established. Results demonstrated that the fiber morphology can be easily manipulated by controlling the spinning parameters and the centrifugal spinning process is a facile approach for fabricating polymer nanofibers in a large-scale and low-cost fashion.}, number={12}, journal={EUROPEAN POLYMER JOURNAL}, author={Lu, Yao and Li, Ying and Zhang, Shu and Xu, Guanjie and Fu, Kun and Lee, Hun and Zhang, Xiangwu}, year={2013}, month={Dec}, pages={3834–3845} } @article{fu_xue_yildiz_li_lee_li_xu_zhou_bradford_zhang_et al._2013, title={Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode}, volume={2}, ISSN={["2211-3282"]}, url={https://publons.com/publon/674385/}, DOI={10.1016/j.nanoen.2012.11.001}, abstractNote={High-energy anode materials have attracted significant attention because of their potential applications in large-scale energy storage devices. However, they often suffer from rapid capacity fading due to the pulverization of the electrode and the breakdown of electric conductive network caused by the large volume changes of active material upon repeated lithium insertion and extraction. In this work, a new electrode composed of Si/C composite nanofibers was prepared, aiming at the improvement of cycling performance of Si anodes through the establishment of a stable electric conductive network for Si during cycling. By electrospinning, a three-dimensional network of carbon nanofibers, which possesses good elasticity to maintain the structure integrity and stable electric conductive network, is formed; by carbon coating, all Si nanoparticles are tightly bonded with carbon fibers to form a stable electric conductive pathway for electrode reactions. The nanofiber structure and the carbon coating on Si, combined with the binder, lead to a stable network structure that can accommodate the huge volume change of Si during the repeated volume expansion and contraction, thus resulting in excellent cycling performance.}, number={3}, journal={NANO ENERGY}, publisher={Elsevier BV}, author={Fu, Kun and Xue, Leigang and Yildiz, Ozkan and Li, Shuli and Lee, Hun and Li, Ying and Xu, Guanjie and Zhou, Lan and Bradford, Philip D. and Zhang, Xiangwu and et al.}, year={2013}, month={May}, pages={361–367} }