@article{hudson_shiver_yu_mehta_jima_kane_patisaul_cowley_2021, title={Transcriptomic, proteomic, and metabolomic analyses identify candidate pathways linking maternal cadmium exposure to altered neurodevelopment and behavior}, volume={11}, ISSN={["2045-2322"]}, url={https://europepmc.org/articles/PMC8357970}, DOI={10.1038/s41598-021-95630-2}, abstractNote={AbstractCadmium (Cd) is a ubiquitous toxic heavy metal of major public concern. Despite inefficient placental transfer, maternal Cd exposure impairs fetal growth and development. Increasing evidence from animal models and humans suggests maternal Cd exposure negatively impacts neurodevelopment; however, the underlying molecular mechanisms are unclear. To address this, we utilized multiple -omics approaches in a mouse model of maternal Cd exposure to identify pathways altered in the developing brain. Offspring maternally exposed to Cd presented with enlarged brains proportional to body weights at birth and altered behavior at adulthood. RNA-seq in newborn brains identified exposure-associated increases in Hox gene and myelin marker expression and suggested perturbed retinoic acid (RA) signaling. Proteomic analysis showed altered levels of proteins involved in cellular energy pathways, hypoxic response, and RA signaling. Consistent with transcriptomic and proteomic analyses, we identified increased levels of retinoids in maternally-exposed newborn brains. Metabolomic analyses identified metabolites with significantly altered abundance, supportive of changes to cellular energy pathways and hypoxia. Finally, maternal Cd exposure reduced mitochondrial DNA levels in newborn brains. The identification of multiple pathways perturbed in the developing brain provides a basis for future studies determining the mechanistic links between maternal Cd exposure and altered neurodevelopment and behavior.}, number={1}, journal={SCIENTIFIC REPORTS}, author={Hudson, Kathleen M. and Shiver, Emily and Yu, Jianshi and Mehta, Sanya and Jima, Dereje D. and Kane, Maureen A. and Patisaul, Heather B. and Cowley, Michael}, year={2021}, month={Aug} } @article{hudson_belcher_cowley_2019, title={Maternal cadmium exposure in the mouse leads to increased heart weight at birth and programs susceptibility to hypertension in adulthood}, volume={9}, ISSN={["2045-2322"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85072393964&partnerID=MN8TOARS}, DOI={10.1038/s41598-019-49807-5}, abstractNote={AbstractCadmium (Cd) is a toxic heavy metal ubiquitous in the environment. Maternal exposure to Cd is associated with fetal growth restriction, trace element deficiencies, and congenital malformations. Cd exposure during adulthood is associated with cardiovascular disease (CVD); however, the effects of maternal Cd exposure on offspring cardiovascular development and disease are not well-understood. Utilizing a mouse model of maternal Cd exposure, we show that offspring born to Cd-exposed mothers have increased heart weights at birth and susceptibility to hypertension during adulthood. Despite inefficient maternal-fetal transfer of Cd, maternal Cd alters fetal levels of essential trace elements including a deficiency in iron, which is required for cardiovascular system development, oxygen homeostasis, and cellular metabolism. RNA-seq on newborn hearts identifies differentially expressed genes associated with maternal Cd exposure that are enriched for functions in CVD, hypertension, enlarged hearts, cellular energy, and hypoxic stress. We propose that a maternal Cd exposure-induced iron deficiency leads to altered cellular metabolic pathways and hypoxic conditions during fetal development; this stress may contribute to increased heart weight at birth and the programming of susceptibility to hypertension in adulthood. These studies will give insights into potential mechanisms through which maternal Cd exposure impacts cardiovascular development and disease.}, number={1}, journal={SCIENTIFIC REPORTS}, publisher={Springer Science and Business Media LLC}, author={Hudson, Kathleen M. and Belcher, Scott M. and Cowley, Michael}, year={2019}, month={Sep} } @article{cowley_skaar_jima_maguire_hudson_park_sorrow_hoyo_2018, title={Effects of cadmium exposure on DNA methylation at imprinting control regions and genome-wide in mothers and newborn children}, volume={126}, number={3}, journal={Environmental Health Perspectives}, author={Cowley, M. and Skaar, D. A. and Jima, D. D. and Maguire, R. L. and Hudson, K. M. and Park, S. S. and Sorrow, P. and Hoyo, C.}, year={2018} }