Kevin Gitushi Alqahtani, S., Gitushi, K. M., & Echekki, T. (2024). A Data-Based Hybrid Chemistry Acceleration Framework for the Low-Temperature Oxidation of Complex Fuels. ENERGIES, 17(3). https://doi.org/10.3390/en17030734 Taassob, A., Kumar, A., Gitushi, K. M., Ranade, R., & Echekki, T. (2024). A PINN-DeepONet framework for extracting turbulent combustion closure from multiscalar measurements. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 429. https://doi.org/10.1016/j.cma.2024.117163 Gitushi, K. M., & Echekki, T. (2024). Comparisons of Different Representative Species Selection Schemes for Reduced-Order Modeling and Chemistry Acceleration of Complex Hydrocarbon Fuels. ENERGIES, 17(11). https://doi.org/10.3390/en17112604 Ranade, R., Gitushi, K. M., & Echekki, T. (2023, November 25). Deep Learning of Joint Scalar PDFs in Turbulent Flames from Sparse Multiscalar Data. COMBUSTION SCIENCE AND TECHNOLOGY, Vol. 11. https://doi.org/10.1080/00102202.2023.2283816 Gitushi, K. M., Blaylock, M., & Hecht, E. S. S. (2023). Simulations for Planning of Liquid Hydrogen Spill Test. ENERGIES, 16(4). https://doi.org/10.3390/en16041580 Gitushi, K. M., Blaylock, M. L., & Klebanoff, L. E. (2022). Hydrogen gas dispersion studies for hydrogen fuel cell vessels II: Fuel cell room releases and the influence of ventilation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 47(50), 21492–21505. https://doi.org/10.1016/j.ijhydene.2022.04.263 Gitushi, K. M., Ranade, R., & Echekki, T. (2022). Investigation of deep learning methods for efficient high-fidelity simulations in turbulent combustion. COMBUSTION AND FLAME, 236. https://doi.org/10.1016/j.combustflame.2021.111814