@article{lu_chandrakanth_lewis_andres_bovet_goepfert_dewey_2021, title={Constitutive activation of nitrate reductase in tobacco alters flowering time and plant biomass}, volume={11}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-021-83797-7}, abstractNote={Pyridine alkaloids produced in tobacco can react with nitrosating agents such as nitrite to form tobacco-specific nitrosamines (TSNA), which are among the most notable toxicants present in tobacco smoke. The market type known as burley tobacco is particularly susceptible to TSNA formation because its corresponding cultivars exhibit a nitrogen-use-deficiency phenotype which results in high accumulation of nitrate, which, in turn, is converted to nitrite by leaf surface microbes. We have previously shown that expression of a constitutively activated nitrate reductase (NR) enzyme dramatically decreases leaf nitrate levels in burley tobacco, resulting in substantial TSNA reductions without altering the alkaloid profile. Here, we show that plants expressing a constitutively active NR construct, designated 35S:S523D-NR, display an early-flowering phenotype that is also associated with a substantial reduction in plant biomass. We hypothesized that crossing 35S:S523D-NR tobaccos with burley cultivars that flower later than normal would help mitigate the undesirable early-flowering/reduced-biomass traits while maintaining the desirable low-nitrate/TSNA phenotype. To test this, 35S:S523D-NR plants were crossed with two late-flowering cultivars, NC 775 and NC 645WZ. In both cases, the plant biomass at harvest was restored to levels similar to those in the original cultivar used for transformation while the low-nitrate/TSNA trait was maintained. Interestingly, the mechanism by which yield was restored differed markedly between the two crosses. Biomass restoration in F1 hybrids using NC 645WZ as a parent was associated with delayed flowering, as originally hypothesized. Unexpectedly, however, crosses with NC 775 displayed enhanced biomass despite maintaining the early-flowering trait of the 35S:S523D-NR parent.}, number={1}, journal={SCIENTIFIC REPORTS}, author={Lu, Jianli and Chandrakanth, Niharika N. and Lewis, Ramsey S. and Andres, Karen and Bovet, Lucien and Goepfert, Simon and Dewey, Ralph E.}, year={2021}, month={Feb} } @article{lewis_lopez_bowen_andres_steede_dewey_2015, title={Transgenic and Mutation-Based Suppression of a Berberine Bridge Enzyme-Like (BBL) Gene Family Reduces Alkaloid Content in Field-Grown Tobacco}, volume={10}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0117273}, abstractNote={Motivation exists to develop tobacco cultivars with reduced nicotine content for the purpose of facilitating compliance with expected tobacco product regulations that could mandate the lowering of nicotine levels per se, or the reduction of carcinogenic alkaloid-derived tobacco specific nitrosamines (TSNAs). A berberine bridge enzyme-like (BBL) gene family was recently characterized for N. tabacum and found to catalyze one of the final steps in pyridine alkaloid synthesis for this species. Because this gene family acts downstream in the nicotine biosynthetic pathway, it may represent an attractive target for genetic strategies with the objective of reducing alkaloid content in field-grown tobacco. In this research, we produced transgenic doubled haploid lines of tobacco cultivar K326 carrying an RNAi construct designed to reduce expression of the BBL gene family. Field-grown transgenic lines carrying functional RNAi constructs exhibited average cured leaf nicotine levels of 0.684%, in comparison to 2.454% for the untransformed control. Since numerous barriers would need to be overcome to commercialize transgenic tobacco cultivars, we subsequently pursued a mutation breeding approach to identify EMS-induced mutations in the three most highly expressed isoforms of the BBL gene family. Field evaluation of individuals possessing different homozygous combinations of truncation mutations in BBLa, BBLb, and BBLc indicated that a range of alkaloid phenotypes could be produced, with the triple homozygous knockout genotype exhibiting greater than a 13-fold reduction in percent total alkaloids. The novel source of genetic variability described here may be useful in future tobacco breeding for varied alkaloid levels.}, number={2}, journal={PLOS ONE}, author={Lewis, Ramsey S. and Lopez, Harry O. and Bowen, Steve W. and Andres, Karen R. and Steede, William T. and Dewey, Ralph E.}, year={2015}, month={Feb} }