@article{forfora_azuaje_vivas_vera_brito_venditti_kelley_tu_woodley_gonzalez_2024, title={Evaluating biomass sustainability: Why below-ground carbon sequestration matters}, volume={439}, ISSN={["1879-1786"]}, url={https://doi.org/10.1016/j.jclepro.2024.140677}, DOI={10.1016/j.jclepro.2024.140677}, abstractNote={Biomass, as a raw material, has been identified as a crucial component of decarbonization strategies to mitigate climate change. Decisions on which biomass should be targeted for different purposes are dependent on variables such as availability, chemical composition, and sustainability. Consumer perception often positions non-wood sources, such as bamboo, as environmentally preferable feedstocks for fiber-based product production. Yet, this perceived environmental benefit lacks robust scientific substantiation and standardized methodologies. This study addresses this gap by conducting a cradle-to-gate life cycle assessment (LCA) of twelve biomass production systems encompassing tree plantations, dedicated crops, and agricultural residues for energy and bioproducts manufacture. The evaluated feedstocks include southern softwood, wheat straw, rice straw, rice husk, hemp hurd, sugarcane bagasse, switchgrass, biomass sorghum (United States), eucalyptus (Brazil), bamboo (China), and northern softwood (Canada). Incorporating a critical yet often overlooked factor, this LCA integrates the potential soil organic carbon sequestration (SOC) via below-ground biomass for each biomass type. This consideration significantly alters the estimated carbon intensity per ton of feedstock, potentially reshaping sustainability perceptions as certain systems emerge as carbon sinks. From a cradle-to-farm gate perspective, the assessed global warming potential for biomass production spans 12–245 kg CO2eq per oven-dry ton (ODt), factoring only anthropogenic emissions. However, when accounting for SOC sequestration, the range shifts to −170 to 228 kg CO2eq per ODt, highlighting potential the role of biomass to act as carbon sink systems. By illuminating the dynamic influence of SOC sequestration, this study contributes to a more comprehensive understanding of biomass-related carbon emissions, shedding light on pathways to mitigate environmental impact.}, journal={JOURNAL OF CLEANER PRODUCTION}, author={Forfora, Naycari and Azuaje, Ivana and Vivas, Keren A. and Vera, Ramon E. and Brito, Amelys and Venditti, Richard and Kelley, Stephen and Tu, Qingshi and Woodley, Alex and Gonzalez, Ronalds}, year={2024}, month={Feb} } @article{vera_zambrano_marquez_vivas_forfora_bedard_farrell_ankeny_pal_jameel_et al._2023, title={Environmentally friendly oxidation pretreatments to produce sugar-based building blocks from dyed textile wastes via enzymatic hydrolysis}, volume={467}, ISSN={["1873-3212"]}, DOI={10.1016/j.cej.2023.143321}, abstractNote={Given the increasing concern over textile waste management and the proliferation of textile landfills, enzymatic hydrolysis of cotton represents a potential pathway to upcycle textile waste into valuable chemical building blocks. However, this pathway is challenged by the presence of persistent dyes, hindering enzyme performance. To overcome this issue, environmentally friendly and total chlorine free oxidation methods such as ozone and alkaline hydrogen peroxide were used in combination with mechanical refining pretreatment. The results showed that the enzymatic conversion of black-dyed cotton, without oxidation, resulted in a glucose yield of only 60% as compared to 95% for undyed cotton fibers. On the other hand, the inclusion of oxidation processes in the pretreatment stage resulted in a glucose yield of 90% via enzymatic hydrolysis at expense of using low oxidation chemicals and low enzyme charges. This work highlights the potential of oxidation methods, enzymatic hydrolysis, and mechanical refining as an ecofriendly pathway for generating value-added chemicals from cotton textile waste while promoting economic circularity.}, journal={CHEMICAL ENGINEERING JOURNAL}, author={Vera, Ramon E. and Zambrano, Franklin and Marquez, Ronald and Vivas, Keren A. and Forfora, Naycari and Bedard, John and Farrell, Matthew and Ankeny, Mary and Pal, Lokendra and Jameel, Hasan and et al.}, year={2023}, month={Jul} } @article{vera_vivas_urdaneta_franco_sun_forfora_frazier_gongora_saloni_fenn_et al._2023, title={Transforming non-wood feedstocks into dissolving pulp via organosolv pulping: An alternative strategy to boost the share of natural fibers in the textile industry.}, volume={429}, ISSN={["1879-1786"]}, url={https://doi.org/10.1016/j.jclepro.2023.139394}, DOI={10.1016/j.jclepro.2023.139394}, abstractNote={This work evaluates wheat straw, switchgrass, and hemp hurd as potential alternatives for producing dissolving pulp using sulfur dioxide (SO2)-ethanol-water (SEW) pulping. The SEW process is described in detail for wheat straw, and the best pulping conditions for this feedstock were 130 °C, 4 h, and 10% SO2 concentration, comprised in a sulfur-ethanol-water ratio of 10-45-45. This resulted in a viscose-grade pulp with 93% α-cellulose, 2.0% hemicelluloses, <0.1% lignin, 0.2% ash content, and a viscosity of 4.7 cP. The best pulping conditions for wheat straw were applied to switchgrass and hemp hurd. Wheat straw and switchgrass had similar pulp quality, while hemp hurd pulp had a higher hemicellulose content and lower viscosity. This work suggests that non-wood feedstocks such as wheat straw and switchgrass can be promising alternatives for dissolving pulp production, which can help reduce the pressure on the textile industry to increase the use of natural fibers and mitigate the environmental impact of non-biodegradable synthetic fibers.}, journal={JOURNAL OF CLEANER PRODUCTION}, author={Vera, Ramon E. and Vivas, Keren A. and Urdaneta, Fernando and Franco, Jorge and Sun, Runkun and Forfora, Naycari and Frazier, Ryen and Gongora, Stephanie and Saloni, Daniel and Fenn, Larissa and et al.}, year={2023}, month={Dec} } @article{vera_suarez_zambrano_marquez_bedard_vivas_pifano_farrell_ankeny_jameel_et al._2023, title={Upcycling cotton textile waste into bio-based building blocks through an environmentally friendly and high-yield conversion process}, volume={189}, ISSN={["1879-0658"]}, url={https://doi.org/10.1016/j.resconrec.2022.106715}, DOI={10.1016/j.resconrec.2022.106715}, abstractNote={This work presents mechanical refining as a chemical-free pretreatment of cotton textile waste to be converted into glucose via enzymatic hydrolysis. Both Cellic® CTec2 and CTec3 cellulase enzymes were evaluated to perform the enzymatic hydrolysis. Mechanical refining enabled cotton fiber fibrillation, thus increasing its specific surface area, water swellability, enzyme adsorption, and the efficiency of cotton conversion into sugars. Compared to conventional pretreatments, mechanical refining promoted sugar yields above 90% after enzymatic hydrolysis at lower enzyme usage (4–6 FPU/O.D g). From experimental data, a non-linear model was developed to predict cotton conversion. The predictive model allowed the optimization of the conversion process, which resulted in maximum yields of 89.3 and 98.3% when CTec2 and CTec3 were respectively used. Results from this work open the window to deploy mechanical refining as a promising and more sustainable transformation approach to produce sugar-based building blocks within the circular economy framework of textile waste.}, journal={RESOURCES CONSERVATION AND RECYCLING}, author={Vera, Ramon E. and Suarez, Antonio and Zambrano, Franklin and Marquez, Ronald and Bedard, John and Vivas, Keren A. and Pifano, Alonzo and Farrell, Matthew and Ankeny, Mary and Jameel, Hasan and et al.}, year={2023}, month={Feb} }