@article{deshotels_carabas_beichler_deaconescu_enck_2020, title={Kobold: Evaluating Decentralized Access Control for Remote NSXPC Methods on iOS}, ISSN={["1081-6011"]}, DOI={10.1109/SP40000.2020.00023}, abstractNote={Apple uses several access control mechanisms to prevent third party applications from directly accessing security sensitive resources, including sandboxing and file access control. However, third party applications may also indirectly access these resources using inter-process communication (IPC) with system daemons. If these daemons fail to properly enforce access control on IPC, confused deputy vulnerabilities may result. Identifying such vulnerabilities begins with an enumeration of all IPC services accessible to third party applications. However, the IPC interfaces and their corresponding access control policies are unknown and must be reverse engineered at a large scale. In this paper, we present the Kobold framework to study NSXPC-based system services using a combination of static and dynamic analysis. Using Kobold, we discovered multiple NSXPC services with confused deputy vulnerabilities and daemon crashes. Our findings include the ability to activate the microphone, disable access to all websites, and leak private data stored in iOS File Providers.}, journal={2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2020)}, author={Deshotels, Luke and Carabas, Costin and Beichler, Jordan and Deaconescu, Razvan and Enck, William}, year={2020}, pages={1056–1070} } @article{shu_wang_gorski_andow_nadkarni_deshotels_gionta_enck_gu_2016, title={A Study of Security Isolation Techniques}, volume={49}, ISSN={["1557-7341"]}, DOI={10.1145/2988545}, abstractNote={Security isolation is a foundation of computing systems that enables resilience to different forms of attacks. This article seeks to understand existing security isolation techniques by systematically classifying different approaches and analyzing their properties. We provide a hierarchical classification structure for grouping different security isolation techniques. At the top level, we consider two principal aspects: mechanism and policy. Each aspect is broken down into salient dimensions that describe key properties. We break the mechanism into two dimensions, enforcement location and isolation granularity, and break the policy aspect down into three dimensions: policy generation, policy configurability, and policy lifetime. We apply our classification to a set of representative articles that cover a breadth of security isolation techniques and discuss tradeoffs among different design choices and limitations of existing approaches.}, number={3}, journal={ACM COMPUTING SURVEYS}, publisher={ACM}, author={Shu, Rui and Wang, Peipei and Gorski, Sigmund A. and Andow, Benjamin and Nadkarni, Adwait and Deshotels, Luke and Gionta, Jason and Enck, William and Gu, Xiaohui}, year={2016}, month={Dec} }