@article{ippolito_jennings_monks_chaudhari_jordan_moore_blankenship_2024, title={Response of stevia to reduced-risk synthetic and nonsynthetic herbicides applied post-transplant}, volume={38}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2024.20}, abstractNote={Abstract Greenhouse trials were conducted to determine the response of stevia to reduce risk synthetic and nonsynthetic herbicides applied over-the-top post-transplant. In addition, field trials were conducted with stevia grown in a polyethylene mulch production system to determine crop response and weed control in planting holes to reduced risk synthetic and nonsynthetic herbicides applied post-transplant directed. Treatments included caprylic acid plus capric acid, clove oil plus cinnamon oil, d-limonene, acetic acid (200 grain), citric acid, pelargonic acid, eugenol, ammonium nonanoate, and ammoniated soap of fatty acids. Stevia yield (dry above ground biomass) in the greenhouse was reduced by all herbicide treatments. Citric acid and clove oil + cinnamon oil were the least injurious, reducing yield by 16 to 20%, respectively. In field studies, d-limonene, pelargonic acid, ammonium nonanoate, and ammoniated soap of fatty acids controlled Palmer amaranth > 90% 1 wk after treatment (WAT). In field studies caprylic acid plus capric acid, pelargonic acid, and ammonium nonanoate caused > 30% injury to stevia plant at 2 WAT, and D-limonene, citric acid, acetic acid, and ammoniated soap of fatty acids caused 18 to 25% injury 2 WAT. Clove oil plus cinnamon oil and eugenol caused < 10% injury. Despite being injurious, herbicides applied in the field did not reduce yield compared to the nontreated check. Based upon yield data, these herbicides have potential for use in stevia; however, these products could delay harvest if applied to established stevia. In particular, clove oil plus cinnamon oil has potential for use for early season weed management for organic production systems. The application of clove oil + cinnamon oil over-the-top resulted in <10% injury 28 DAT in the greenhouse and 3% injury 6 WAT POST-directed in the field. In addition, this treatment provided 95% control of Palmer amaranth 4 WAT.}, journal={WEED TECHNOLOGY}, author={Ippolito, Stephen J. and Jennings, Katherine M. and Monks, David W. and Chaudhari, Sushila and Jordan, David and Moore, Levi D. and Blankenship, Colton D.}, year={2024}, month={May} } @article{moore_jennings_monks_boyette_leon_jordan_ippolito_blankenship_chang_2023, title={Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut, and sweetpotato}, volume={1}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2023.1}, DOI={10.1017/wet.2023.1}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. D. and Jennings, Katherine M. M. and Monks, David W. W. and Boyette, Michael D. D. and Leon, Ramon G. G. and Jordan, David L. L. and Ippolito, Stephen J. J. and Blankenship, Colton D. D. and Chang, Patrick}, year={2023}, month={Jan} } @article{batts_moore_ippolito_jennings_smith_2022, title={Effect of simulated synthetic auxin herbicide sprayer contamination in sweetpotato propagation beds}, volume={36}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.26}, DOI={10.1017/wet.2022.26}, abstractNote={Abstract}, number={3}, journal={WEED TECHNOLOGY}, author={Batts, Thomas M. and Moore, Levi D. and Ippolito, Stephen J. and Jennings, Katherine M. and Smith, Stephen C.}, year={2022}, month={Jun}, pages={379–383} } @article{moore_jennings_monks_jordan_leon_boyette_2021, title={Evaluating shade cloth to simulate Palmer amaranth (Amaranthus palmeri) competition in sweetpotato}, volume={69}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2021.21}, abstractNote={Abstract}, number={4}, journal={WEED SCIENCE}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Leon, Ramon G. and Boyette, Michael D.}, year={2021}, month={Jul}, pages={478–484} } @article{moore_jennings_monks_boyette_jordan_leon_2021, title={Herbicide systems including linuron for Palmer amaranth (Amaranthus palmeri) control in sweetpotato}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.63}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Boyette, Michael D. and Jordan, David L. and Leon, Ramon G.}, year={2021}, month={Feb}, pages={49–56} } @article{moore_jennings_monks_leon_boyette_jordan_2021, title={Influence of herbicides on germination and quality of Palmer amaranth (Amaranthus palmeri) seed}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2021.71}, abstractNote={Abstract}, number={5}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Leon, Ramon G. and Boyette, Michael D. and Jordan, David L.}, year={2021}, month={Oct}, pages={786–789} } @article{moore_jennings_monks_leon_jordan_boyette_2021, title={Safety and efficacy of linuron with or without an adjuvant or S-metolachlor for POST control of Palmer amaranth (Amaranthus palmeri) in sweetpotato}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2021.27}, abstractNote={Abstract}, number={3}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Leon, Ramon G. and Jordan, David L. and Boyette, Michael D.}, year={2021}, month={Jun}, pages={471–475} } @article{moore_jennings_monks_jordan_boyette_leon_mahoney_everman_cahoon_2021, title={Susceptibility of Palmer amaranth accessions in North Carolina to atrazine, dicamba, S-metolachlor, and 2,4-D}, volume={11}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20136}, DOI={10.1002/cft2.20136}, abstractNote={Core Ideas}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Boyette, Michael D. and Leon, Ramon G. and Mahoney, Dennis J. and Everman, Wesley J. and Cahoon, Charles W.}, year={2021}, month={Nov} }