@article{tallo_duncan_yamamoto_slaydon_arya_turlapati_mackay_carbone_2021, title={Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy}, volume={11}, ISSN={["2160-1836"]}, DOI={10.1093/g3journal/jkaa014}, abstractNote={Abstract In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.}, number={1}, journal={G3-GENES GENOMES GENETICS}, author={Tallo, Christian A. and Duncan, Laura H. and Yamamoto, Akihiko H. and Slaydon, Joshua D. and Arya, Gunjan H. and Turlapati, Lavanya and Mackay, Trudy F. C. and Carbone, Mary A.}, year={2021}, month={Jan} } @article{morozova_ayroles_jordan_duncan_carbone_lyman_stone_govindaraju_ellison_mackay_et al._2009, title={Alcohol Sensitivity in Drosophila: Translational Potential of Systems Genetics}, volume={183}, ISSN={["1943-2631"]}, DOI={10.1534/genetics.109.107490}, abstractNote={AbstractIdentification of risk alleles for human behavioral disorders through genomewide association studies (GWAS) has been hampered by a daunting multiple testing problem. This problem can be circumvented for some phenotypes by combining genomewide studies in model organisms with subsequent candidate gene association analyses in human populations. Here, we characterized genetic networks that underlie the response to ethanol exposure in Drosophila melanogaster by measuring ethanol knockdown time in 40 wild-derived inbred Drosophila lines. We associated phenotypic variation in ethanol responses with genomewide variation in gene expression and identified modules of correlated transcripts associated with a first and second exposure to ethanol vapors as well as the induction of tolerance. We validated the computational networks and assessed their robustness by transposon-mediated disruption of focal genes within modules in a laboratory inbred strain, followed by measurements of transcript abundance of connected genes within the module. Many genes within the modules have human orthologs, which provides a stepping stone for the identification of candidate genes associated with alcohol drinking behavior in human populations. We demonstrated the potential of this translational approach by identifying seven intronic single nucleotide polymorphisms of the Malic Enzyme 1 (ME1) gene that are associated with cocktail drinking in 1687 individuals of the Framingham Offspring cohort, implicating that variation in levels of cytoplasmic malic enzyme may contribute to variation in alcohol consumption.}, number={2}, journal={GENETICS}, author={Morozova, Tatiana V. and Ayroles, Julien F. and Jordan, Katherine W. and Duncan, Laura H. and Carbone, Mary Anna and Lyman, Richard E. and Stone, Eric A. and Govindaraju, Diddahally R. and Ellison, R. Curtis and Mackay, Trudy F. C. and et al.}, year={2009}, month={Oct}, pages={733–745} } @article{ayroles_carbone_stone_jordan_lyman_magwire_rollmann_duncan_lawrence_anholt_et al._2009, title={Systems genetics of complex traits in Drosophila melanogaster}, volume={41}, ISSN={["1546-1718"]}, DOI={10.1038/ng.332}, abstractNote={Trudy Mackay and colleagues present a resource of 40 Drosophila melanogaster wild-derived inbred lines. The authors quantify genome-wide variation in transcript abundance for six ecologically relevant traits, characterize the transcriptome and identify transcriptional modules. Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.}, number={3}, journal={NATURE GENETICS}, author={Ayroles, Julien F. and Carbone, Mary Anna and Stone, Eric A. and Jordan, Katherine W. and Lyman, Richard F. and Magwire, Michael M. and Rollmann, Stephanie M. and Duncan, Laura H. and Lawrence, Faye and Anholt, Robert R. H. and et al.}, year={2009}, month={Mar}, pages={299–307} } @article{huang_richards_carbone_zhu_anholt_ayroles_duncan_jordan_lawrence_magwire_et al., title={Epistasis dominates the genetic architecture of Drosophila quantitative traits}, volume={109}, number={39}, journal={Proceedings of the National Academy of Sciences of the United States of America}, author={Huang, W. and Richards, S. and Carbone, M. A. and Zhu, D. H. and Anholt, R. R. H. and Ayroles, J. F. and Duncan, L. and Jordan, K. W. and Lawrence, F. and Magwire, M. M. and et al.}, pages={15553–15559} } @article{mackay_richards_stone_barbadilla_ayroles_zhu_casillas_han_magwire_cridland_et al., title={The Drosophila melanogaster genetic reference panel}, volume={482}, number={7384}, journal={Nature}, author={Mackay, T. F. C. and Richards, S. and Stone, E. A. and Barbadilla, A. and Ayroles, J. F. and Zhu, D. H. and Casillas, S. and Han, Y. and Magwire, M. M. and Cridland, J. M. and et al.}, pages={173–178} } @article{carnes_campbell_huang_butler_carbone_duncan_harbajan_king_peterson_weitzel_et al., title={The genomic basis of postponed senescence in Drosophila melanogaster}, volume={10}, number={9}, journal={PLoS One}, author={Carnes, M. U. and Campbell, T. and Huang, W. and Butler, D. G. and Carbone, M. A. and Duncan, L. H. and Harbajan, S. V. and King, E. M. and Peterson, K. R. and Weitzel, A. and et al.} }