@article{walsh_gardner_deiters_williams_2014, title={Intracellular Light-Activation of Riboswitch Activity}, volume={15}, ISSN={1439-4227}, url={http://dx.doi.org/10.1002/cbic.201400024}, DOI={10.1002/cbic.201400024}, abstractNote={By combining a riboswitch with a cell‐permeable photocaged small‐molecule ligand, an optochemical gene control element was constructed that enabled spatial and temporal control of gene expression in bacterial cells. The simplicity of this strategy, coupled with the ability to create synthetic riboswitches with tailored ligand specificities and output in a variety of microorganisms, plants, and fungi might afford a general strategy to photocontrol gene expression in vivo. The ability to activate riboswitches by using light enables the interrogation and manipulation of a wide range of biological processes with high precision, and will have broad utility in the regulation of artificial genetic circuits.}, number={9}, journal={ChemBioChem}, publisher={Wiley}, author={Walsh, Steven and Gardner, Laura and Deiters, Alexander and Williams, Gavin J.}, year={2014}, month={May}, pages={1346–1351} } @misc{gardner_deiters_2012, title={Light-controlled synthetic gene circuits}, volume={16}, ISSN={["1367-5931"]}, DOI={10.1016/j.cbpa.2012.04.010}, abstractNote={Highly complex synthetic gene circuits have been engineered in living organisms to develop systems with new biological properties. A precise trigger to activate or deactivate these complex systems is desired in order to tightly control different parts of a synthetic or natural network. Light represents an excellent tool to achieve this goal as it can be regulated in timing, location, intensity, and wavelength, which allows for precise spatiotemporal control over genetic circuits. Recently, light has been used as a trigger to control the biological function of small molecules, oligonucleotides, and proteins involved as parts in gene circuits. Light activation has enabled the construction of unique systems in living organisms such as band-pass filters and edge-detectors in bacterial cells. Additionally, light also allows for the regulation of intermediate steps of complex dynamic pathways in mammalian cells such as those involved in kinase networks. Herein we describe recent advancements in the area of light-controlled synthetic networks.}, number={3-4}, journal={CURRENT OPINION IN CHEMICAL BIOLOGY}, author={Gardner, Laura and Deiters, Alexander}, year={2012}, month={Aug}, pages={292–299} } @article{gardner_zou_mara_cropp_deiters_2011, title={Photochemical control of bacterial signal processing using a light-activated erythromycin}, volume={7}, ISSN={["1742-206X"]}, DOI={10.1039/c1mb05166k}, abstractNote={Bacterial cells control resistance to the macrolide antibiotic erythromycin using the MphR(A) repressor protein. Erythromycin binds to MphR(A), causing release of the PmphR promoter, activating expression of the 2'-phosphotransferase Mph(A). We engineered the MphR(A)/promoter system to, in conjunction with a light-activatable derivative of erythromycin, enable photochemical activation of gene expression in E. coli. We applied this photochemical gene switch to the construction of a light-triggered logic gate, a light-controlled band-pass filter, as well as spatial and temporal control of gene expression.}, number={9}, journal={MOLECULAR BIOSYSTEMS}, author={Gardner, Laura and Zou, Yan and Mara, Alexandria and Cropp, T. Ashton and Deiters, Alexander}, year={2011}, pages={2554–2557} }