@article{luo_li_zang_chen_zhu_qiao_cai_lu_zhang_wei_et al._2017, title={Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance}, volume={5}, ISSN={["2194-4296"]}, url={https://publons.com/publon/26924653/}, DOI={10.1002/ente.201600686}, abstractNote={Abstract}, number={8}, journal={ENERGY TECHNOLOGY}, author={Luo, L. and Li, D. W. and Zang, J. and Chen, C. and Zhu, J. D. and Qiao, H. and Cai, Y. B. and Lu, K. Y. and Zhang, X. W. and Wei, Q. F. and et al.}, year={2017}, month={Aug}, pages={1364–1372} } @article{luo_qiao_xu_li_zhu_chen_lu_zhu_zhang_wei_et al._2017, title={Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries}, volume={21}, ISSN={["1433-0768"]}, url={https://publons.com/publon/26924649/}, DOI={10.1007/s10008-016-3501-3}, number={5}, journal={JOURNAL OF SOLID STATE ELECTROCHEMISTRY}, author={Luo, L. and Qiao, H. and Xu, W. Z. and Li, D. W. and Zhu, J. D. and Chen, C. and Lu, Y. and Zhu, P. and Zhang, X. W. and Wei, Q. F. and et al.}, year={2017}, month={May}, pages={1385–1395} } @article{luo_xu_xia_fei_zhu_chen_lu_wei_qiao_zhang_et al._2016, title={Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes}, volume={42}, ISSN={["1873-3956"]}, url={https://publons.com/publon/26924662/}, DOI={10.1016/j.ceramint.2016.03.211}, abstractNote={ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.}, number={9}, journal={CERAMICS INTERNATIONAL}, author={Luo, L. and Xu, W. Z. and Xia, Z. K. and Fei, Y. Q. and Zhu, J. D. and Chen, C. and Lu, Y. and Wei, Q. F. and Qiao, H. and Zhang, X. W. and et al.}, year={2016}, month={Jul}, pages={10826–10832} } @article{jiang_zhu_chen_lu_pampal_luo_zhu_zhang_2016, title={Superior high-voltage aqueous carbon/ carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes}, volume={4}, ISSN={["2050-7496"]}, url={https://publons.com/publon/26924664/}, DOI={10.1039/c6ta07063a}, abstractNote={The special ionic conductive mechanism of aqueous polyvinyl alcohol borate gel polymer electrolytes leads to their high operating voltages.}, number={42}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Pampal, Esra Serife and Luo, Lei and Zhu, Pei and Zhang, Xiangwu}, year={2016}, pages={16588–16596} }