Lubos Mitas
Zhou, H., Kincaid, B., Wang, G., Annaberdiyev, A., Ganesh, P., & Mitas, L. (2024). A new generation of effective core potentials: Selected lanthanides and heavy elements. JOURNAL OF CHEMICAL PHYSICS, 160(8). https://doi.org/10.1063/5.0180057
Huang, Y., Faizan, Y. A., Manzoor, M., Brndiar, J., Mitas, L., Fabian, J., & Stich, I. (2023). Colossal band gap response of single-layer phosphorene to strain predicted by quantum Monte Carlo. PHYSICAL REVIEW RESEARCH, 5(3). https://doi.org/10.1103/PhysRevResearch.5.033223
Annaberdiyev, A., Mandal, S., Mitas, L., Krogel, J. T., & Ganesh, P. (2023). The role of electron correlations in the electronic structure of putative Chern magnet TbMn6Sn6. NPJ QUANTUM MATERIALS, 8(1). https://doi.org/10.1038/s41535-023-00583-6
Wang, G., Kincaid, B., Zhou, H., Annaberdiyev, A., Bennett, M. C., Krogel, J. T., & Mitas, L. (2022). A new generation of effective core potentials from correlated and spin-orbit calculations: Selected heavy elements. JOURNAL OF CHEMICAL PHYSICS, 157(5). https://doi.org/10.1063/5.0087300
Isaacs, E. B., Shin, H., Annaberdiyev, A., Wolverton, C., Mitas, L., Benali, A., & Heinonen, O. (2022). Assessing the accuracy of compound formation energies with quantum Monte Carlo. PHYSICAL REVIEW B, 105(22). https://doi.org/10.1103/PhysRevB.105.224110
Kincaid, B., Wang, G., Zhou, H., & Mitas, L. (2022). Correlation consistent effective core potentials for late 3d transition metals adapted for plane wave calculations. JOURNAL OF CHEMICAL PHYSICS, 157(17). https://doi.org/10.1063/5.0109098
Annaberdiyev, A., Melton, C. A., Wang, G., & Mitas, L. (2022). Electronic structure of a-RuCl3 by fixed-node and fixed-phase diffusion Monte Carlo methods. PHYSICAL REVIEW B, 106(7). https://doi.org/10.1103/PhysRevB.106.075127
Bennett, M. C., Reboredo, F. A., Mitas, L., & Krogel, J. T. (2022, January 10). High Accuracy Transition Metal Effective Cores for the Many-Body Diffusion Monte Carlo Method. JOURNAL OF CHEMICAL THEORY AND COMPUTATION. https://doi.org/10.1021/acs.jctc.1c00992
Mitas, L., & Annaberdiyev, A. (2022). Weighted nodal domain averages of eigenstates for quantum Monte Carlo and beyond. CHEMICAL PHYSICS, 557. https://doi.org/10.1016/j.chemphys.2022.111483
Zhou, H., Scemama, A., Wang, G., Annaberdiyev, A., Kincaid, B., Caffarel, M., & Mitas, L. (2022). A quantum Monte Carlo study of systems with effective core potentials and node nonlinearities. CHEMICAL PHYSICS, 554. https://doi.org/10.1016/j.chemphys.2021.111402
Annaberdiyev, A., Wang, G., Melton, C. A., Bennett, M. C., & Mitas, L. (2021). Cohesion and excitations of diamond-structure silicon by quantum Monte Carlo: Benchmarks and control of systematic biases. PHYSICAL REVIEW B, 103(20). https://doi.org/10.1103/PhysRevB.103.205206
Annaberdiyev, A., Melton, C. A., Bennett, M. C., Wang, G., & Mitas, L. (2020). Accurate Atomic Correlation and Total Energies for Correlation Consistent Effective Core Potentials. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 16(3), 1482–1502. https://doi.org/10.1021/acs.jctc.9b00962
Wang, G., Annaberdiyev, A., & Mitas, L. (2020). Binding and excitations in SixHy molecular systems using quantum Monte Carlo. JOURNAL OF CHEMICAL PHYSICS, 153(14). https://doi.org/10.1063/5.0022814
Dubecky, M., Karlicky, F., Minarik, S., & Mitas, L. (2020). Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. JOURNAL OF CHEMICAL PHYSICS, 153(18). https://doi.org/10.1063/5.0030952
Melton, C. A., & Mitas, L. (2020). Many-body electronic structure of LaScO3 by real-space quantum Monte Carlo. PHYSICAL REVIEW B, 102(4). https://doi.org/10.1103/PhysRevB.102.045103
Kent, P. R. C., Annaberdiyev, A., Benali, A., Bennett, M. C., Borda, E. J. L., Doak, P., … Zhao, L. (2020). QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. JOURNAL OF CHEMICAL PHYSICS, 152(17). https://doi.org/10.1063/5.0004860
Wang, G., Annaberdiyev, A., Melton, C. A., Bennett, M. C., Shulenburger, L., & Mitas, L. (2019). A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions. JOURNAL OF CHEMICAL PHYSICS, 151(14). https://doi.org/10.1063/1.5121006
Kulahlioglu, A. H., & Mitas, L. (2019). A quantum Monte Carlo study of the molybdenum dimer (Mo-2). COMPUTATIONAL AND THEORETICAL CHEMISTRY, 1170. https://doi.org/10.1016/j.comptc.2019.112642
Frank, T., Derian, R., Tokar, K., Mitas, L., Fabian, J., & Stich, I. (2019). Many-Body Quantum Monte Carlo Study of 2D Materials: Cohesion and Band Gap in Single-Layer Phosphorene. PHYSICAL REVIEW X, 9(1). https://doi.org/10.1103/PhysRevX.9.011018
Dubecky, M., Jurecka, P., Mitas, L., Ditte, M., & Fanta, R. (2019). Toward Accurate Hydrogen Bonds by Scalable Quantum Monte Carlo. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 15(6), 3552–3557. https://doi.org/10.1021/acs.jctc.9b00096
Bennett, M. C., Wang, G., Annaberdiyev, A., Melton, C. A., Shulenburger, L., & Mitas, L. (2018). A new generation of effective core potentials from correlated calculations: 2nd row elements. JOURNAL OF CHEMICAL PHYSICS, 149(10). https://doi.org/10.1063/1.5038135
Annaberdiyev, A., Wang, G., Melton, C. A., Bennett, M. C., Shulenburger, L., & Mitas, L. (2018). A new generation of effective core potentials from correlated calculations: 3d transition metal series. JOURNAL OF CHEMICAL PHYSICS, 149(13). https://doi.org/10.1063/1.5040472
Melton, C. A., Bennett, M. C., & Mitas, L. (2019). Projector quantum Monte Carlo with averaged vs explicit spin-orbit effects: Applications to tungsten molecular systems. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 128, 367–373. https://doi.org/10.1016/j.jpcs.2017.12.033
Alberi, K., Nardelli, M. B., Zakutayev, A., Mitas, L., Curtarolo, S., Jain, A., … Perkins, J. (2019). [Review of The 2019 materials by design roadmap]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 52(1). https://doi.org/10.1088/1361-6463/aad926
Bennett, M. C., Melton, C. A., Annaberdiyev, A., Wang, G., Shulenburger, L., & Mitas, L. (2017). A new generation of effective core potentials for correlated calculations. JOURNAL OF CHEMICAL PHYSICS, 147(22). https://doi.org/10.1063/1.4995643
Bennett, M. C., Kulahlioglu, A. H., & Mitas, L. (2017). A quantum Monte Carlo study of mono(benzene) TM and bis(benzene) TM systems. CHEMICAL PHYSICS LETTERS, 667, 74–78. https://doi.org/10.1016/j.cplett.2016.11.032
Melton, C. A., & Mitas, L. (2017). Quantum Monte Carlo with variable spins: Fixed-phase and fixed-node approximations. PHYSICAL REVIEW E, 96(4). https://doi.org/10.1103/physreve.96.043305
Tokar, K., Derian, R., Mitas, L., & Stich, I. (2016). Charged vanadium-benzene multidecker clusters: DFT and quantum Monte Carlo study. JOURNAL OF CHEMICAL PHYSICS, 144(6). https://doi.org/10.1063/1.4941085
Melton, C. A., & Mitas, L. (2016). Fixed-node and fixed-phase approximations and their relationship to variable spins in quantum monte carlo. Recent progress in quantum monte carlo, 1234, 1–13. https://doi.org/10.1021/bk-2016-1234.ch001
Niu, Q., Dinan, J., Tirukkovalur, S., Benali, A., Kim, J., Mitas, L., … Sadayappan, P. (2016). Global-view coefficients: a data management solution for parallel quantum Monte Carlo applications. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 28(13), 3655–3671. https://doi.org/10.1002/cpe.3748
Dubecky, M., Mitas, L., & Jurecka, P. (2016). [Review of Noncovalent Interactions by Quantum Monte Carlo]. CHEMICAL REVIEWS, 116(9), 5188–5215. https://doi.org/10.1021/acs.chemrev.5b00577
Melton, C. A., Bennett, M. C., & Mitas, L. (2016). Quantum Monte Carlo with variable spins. JOURNAL OF CHEMICAL PHYSICS, 144(24). https://doi.org/10.1063/1.4954726
Melton, C. A., Zhu, M., Guo, S., Ambrosetti, A., Pederiva, F., & Mitas, L. (2016). Spin-orbit interactions in electronic structure quantum Monte Carlo methods. PHYSICAL REVIEW A, 93(4). https://doi.org/10.1103/physreva.93.042502
Rasch, K. M., & Mitas, L. (2015). Fixed-node diffusion Monte Carlo method for lithium systems. PHYSICAL REVIEW B, 92(4). https://doi.org/10.1103/physrevb.92.045122
Ambrosetti, A., Silvestrelli, P. L., Pederiva, F., Mitas, L., & Toigo, F. (2015). Repulsive atomic Fermi gas with Rashba spin-orbit coupling: A quantum Monte Carlo study. Physical Review. A, 91(5). https://doi.org/10.1103/physreva.91.053622
Kulahlioglu, A. H., & Mitas, L. (2014). A quantum Monte Carlo study of zinc-porphyrin: Vertical excitation between the singlet ground state and the lowest-lying singlet excited state. Computational and Theoretical Chemistry, 1046, 6–9. https://doi.org/10.1016/J.COMPTC.2014.07.006
Rasch, K. M., Hu, S., & Mitas, L. (2014). Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities. The Journal of Chemical Physics, 140(4), 041102. https://doi.org/10.1063/1.4862496
Dubecky, M., Derian, R., Jurecka, P., Mitas, L., Hobza, P., & Otyepka, M. (2014). Quantum Monte Carlo for noncovalent interactions: an efficient protocol attaining benchmark accuracy. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 16(38), 20915–20923. https://doi.org/10.1039/c4cp02093f
Horvathova, L., Derian, R., Mitas, L., & Stich, I. (2014). Quantum Monte Carlo study of one-dimensional transition-metal organometallic cluster systems and their suitability as spin filters. PHYSICAL REVIEW B, 90(11). https://doi.org/10.1103/physrevb.90.115414
Kulahlioglu, A. H., Rasch, K., Hu, S., & Mitas, L. (2014). Density dependence of fixed-node errors in diffusion quantum Monte Carlo: Triplet pair correlations. CHEMICAL PHYSICS LETTERS, 591, 170–174. https://doi.org/10.1016/j.cplett.2013.11.033
Dubecky, M., Jurecka, P., Derian, R., Hobza, P., Otyepka, M., & Mitas, L. (2013). Quantum Monte Carlo Methods Describe Noncovalent Interactions with Subchemical Accuracy. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 9(10), 4287–4292. https://doi.org/10.1021/ct4006739
Zhu, M., & Mitas, L. (2013). Study of Ne-core and He-core pseudopotential errors in the MnO molecule: Quantum Monte Carlo benchmark. CHEMICAL PHYSICS LETTERS, 572, 136–140. https://doi.org/10.1016/j.cplett.2013.04.006
Guo, S., Bajdich, M., Mitas, L., & Reynolds, P. J. (2013). Study of dipole moments of LiSr and KRb molecules by quantum Monte Carlo methods. MOLECULAR PHYSICS, 111(12-13), 1744–1752. https://doi.org/10.1080/00268976.2013.788741
Rasch, K. M., & Mitas, L. (2012). Impact of electron density on the fixed-node errors in Quantum Monte Carlo of atomic systems. Chemical Physics Letters, 528, 59–62. https://doi.org/10.1016/j.cplett.2012.01.016
Hu, S. M., Rasch, K., & Mitas, L. (2012). Many-body nodal hypersurface and domain averages for correlated wave functions. Advances in quantum monte carlo, 1094, 77–87.
Horvathova, L., Dubecky, M., Mitas, L., & Stich, I. (2013). Quantum Monte Carlo Study of pi-Bonded Transition Metal Organometallics: Neutral and Cationic Vanadium-Benzene and Cobalt-Benzene Half Sandwiches. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 9(1), 390–400. https://doi.org/10.1021/ct300887t
Horvathova, L., Dubecky, M., Mitas, L., & Stich, I. (2012). Spin Multiplicity and Symmetry Breaking in Vanadium-Benzene Complexes. PHYSICAL REVIEW LETTERS, 109(5). https://doi.org/10.1103/physrevlett.109.053001
Ambrosetti, A., Silvestrelli, P. L., Toigo, F., Mitas, L., & Pederiva, F. (2012). Variational Monte Carlo for spin-orbit interacting systems. PHYSICAL REVIEW B, 85(4). https://doi.org/10.1103/physrevb.85.045115
Kolorenc, J., & Mitas, L. (2011). [Review of Applications of quantum Monte Carlo methods in condensed systems]. REPORTS ON PROGRESS IN PHYSICS, 74(2). https://doi.org/10.1088/0034-4885/74/2/026502
Li, X., Kolorenc, J., & Mitas, L. (2011). Atomic Fermi gas in the unitary limit by quantum Monte Carlo methods: Effects of the interaction range. PHYSICAL REVIEW A, 84(2). https://doi.org/10.1103/physreva.84.023615
Bour, S., Li, X., Lee, D., Meissner, U.-G., & Mitas, L. (2011). Precision benchmark calculations for four particles at unitarity. PHYSICAL REVIEW A, 83(6). https://doi.org/10.1103/physreva.83.063619
Kolorenc, J., & Mitas, L. (2010). Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods. PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009), Vol. 3, pp. 1437–1441. https://doi.org/10.1016/j.phpro.2010.01.203
Dubecky, M., Derian, R., Mitas, L., & Stich, I. (2010). Ground and excited electronic states of azobenzene: A quantum Monte Carlo study. JOURNAL OF CHEMICAL PHYSICS, 133(24). https://doi.org/10.1063/1.3506028
Bajdich, M., Kolorenč, J., Mitas, L., & Reynolds, P. J. (2010). Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods. Physics Procedia, 3(3), 1397–1410. https://doi.org/10.1016/j.phpro.2010.01.199
Mitas, L., & Kolorenc, J. (2010). Quantum Monte Carlo Studies of Transition Metal Oxides. THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, Vol. 71, pp. 137–145. https://doi.org/10.2138/rmg.2010.71.7
Kolorenc, J., Hu, S., & Mitas, L. (2010). Wave functions for quantum Monte Carlo calculations in solids: Orbitals from density functional theory with hybrid exchange-correlation functionals. PHYSICAL REVIEW B, 82(11). https://doi.org/10.1103/physrevb.82.115108
Bajdich, M., & Mitas, L. (2009). [Review of ELECTRONIC STRUCTURE QUANTUM MONTE CARLO]. ACTA PHYSICA SLOVACA, 59(2), 81–168. https://doi.org/10.2478/v10155-010-0095-7
Wagner, L. K., Bajdich, M., & Mitas, L. (2009). QWalk: A quantum Monte Carlo program for electronic structure. JOURNAL OF COMPUTATIONAL PHYSICS, 228(9), 3390–3404. https://doi.org/10.1016/j.jcp.2009.01.017
Lester, W. A., Jr., Mitas, L., & Hammond, B. (2009). Quantum Monte Carlo for atoms, molecules and solids. CHEMICAL PHYSICS LETTERS, 478(1-3), 1–10. https://doi.org/10.1016/j.cplett.2009.06.095
Kino, H., Wagner, L. K., & Mitas, L. (2009). Theoretical Study of Electronic and Atomic Structures of (MnO)(n). JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 6(12), 2583–2588. https://doi.org/10.1166/jctn.2009.1318
Bajdich, M., Mitas, L., Wagner, L. K., & Schmidt, K. E. (2008). Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods. PHYSICAL REVIEW B, 77(11). https://doi.org/10.1103/physrevb.77.115112
Kolorenc, J., & Mitas, L. (2007). B1-to-B8 structural phase transition in MnO under pressure: Comparison of all-electron and pseudopotential approaches. PHYSICAL REVIEW B, 75(23). https://doi.org/10.1103/physrevb.75.235118
Wagner, L. K., & Mitas, L. (2007). Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo. JOURNAL OF CHEMICAL PHYSICS, 126(3). https://doi.org/10.1063/1.2428294
Krcmar, R., Gendiar, A., Mosko, M., Nemeth, R., Vagner, P., & Mitas, L. (2008, March). Persistent current of correlated electrons in mesoscopic ring with impurity. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, Vol. 40, pp. 1507–1509. https://doi.org/10.1016/j.physe.2007.09.074
Vagner, P., Moško, M., Németh, R., Wagner, L., & Mitas, L. (2006). Hartree–Fock versus quantum Monte Carlo study of persistent current in a one-dimensional ring with single scatterer. Physica E: Low-Dimensional Systems and Nanostructures, 32(1-2), 350–353. https://doi.org/10.1016/j.physe.2005.12.062
Bajdich, M., Mitas, L., Drobny, G., Wagner, L. K., & Schmidt, K. E. (2006). Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. PHYSICAL REVIEW LETTERS, 96(13). https://doi.org/10.1103/physrevlett.96.130201
Mitasova, H., Mitas, L., Ratti, C., Ishii, H., Alonso, J., & Harmon, R. S. (2006). Real-time landscape model interaction using a tangible geospatial modeling environment. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 26(4), 55–63. https://doi.org/10.1109/MCG.2006.87
Mitas, L. (2006). Structure of fermion nodes and nodal cells. PHYSICAL REVIEW LETTERS, 96(24). https://doi.org/10.1103/physrevlett.96.240402
Bajdich, M., Mitas, L., Drobny, G., & Wagner, L. K. (2005). Approximate and exact nodes of fermionic wavefunctions: Coordinate transformations and topologies. PHYSICAL REVIEW B, 72(7). https://doi.org/10.1103/physrevb.72.075131
Grossman, J. C., & Mitas, L. (2005). Efficient quantum monte carlo energies for molecular dynamics simulations. PHYSICAL REVIEW LETTERS, 94(5). https://doi.org/10.1103/physrevlett.94.056403
Mitasova, H., Mitas, L., & Harmon, R. S. (2005). Simultaneous spline approximation and topographic analysis for lidar elevation data in open-source GIS. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2(4), 375–379. https://doi.org/10.1109/LGRS.2005.848533
Harkless, J. A. W., Rodriguez, J. H., Mitas, L., & Lester, W. A. (2003). A quantum Monte Carlo and density functional theory study of the electronic structure of peroxynitrite anion. JOURNAL OF CHEMICAL PHYSICS, 118(11), 4987–4992. https://doi.org/10.1063/1.1544732
Wagner, L., & Mitas, L. (2003). A quantum Monte Carlo study of electron correlation in transition metal oxygen molecules. CHEMICAL PHYSICS LETTERS, 370(3-4), 412–417. https://doi.org/10.1016/S0009-2614(03)00128-3
Sen, P., & Mitas, L. (2003). Electronic structure and ground states of transition metals encapsulated in a Si-12 hexagonal prism cage. PHYSICAL REVIEW B, 68(15). https://doi.org/10.1103/physrevb.68.155404
Belomoin, G., Rogozhina, E., Therrien, J., Braun, P. V., Abuhassan, L., Nayfeh, M. H., … Mitas, L. (2002). Effects of surface termination on the band gap of ultrabright Si-29 nanoparticles: Experiments and computational models. PHYSICAL REVIEW B, 65(19). https://doi.org/10.1103/physrevb.65.193406
Bokes, P., Stich, I., & Mitas, L. (2002). Ground-state reconstruction of the Si(001) surface: symmetric versus buckled dimers. CHEMICAL PHYSICS LETTERS, 362(5-6), 559–566. https://doi.org/10.1016/S0009-2614(02)01081-3
Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., … Mitas, L. (2002). Observation of a magic discrete family of ultrabright Si nanoparticles. APPLIED PHYSICS LETTERS, 80(5), 841–843. https://doi.org/10.1063/1.1435802
Mitas, L. (2002). Quantum Monte Carlo methods for electronic structure of nanosystems. ISRAEL JOURNAL OF CHEMISTRY, 42(2-3), 261–268. https://doi.org/10.1560/QRWB-75NV-MEL1-D124
Mitas, L., Therrien, J., Twesten, R., Belomoin, G., & Nayfeh, M. H. (2001). Effect of surface reconstruction on the structural prototypes of ultrasmall ultrabright Si-29 nanoparticles. APPLIED PHYSICS LETTERS, 78(13), 1918–1920. https://doi.org/10.1063/1.1356447
Foulkes, W. M. C., Mitas, L., Needs, R. J., & Rajagopal, G. (2001). [Review of Quantum Monte Carlo simulations of solids]. REVIEWS OF MODERN PHYSICS, 73(1), 33–83. https://doi.org/10.1103/revmodphys.73.33