Aloysius Helminck
Helminck, A. G., & Helminck, G. F. (2025). A construction of solutions of an integrable deformation of a commutative Lie algebra of skew hermitian ZΓZ-matrices. Indagationes Mathematicae. https://doi.org/10.1016/j.indag.2024.04.001
Buell, C., Helminck, A., Klima, V., Schaefer, J., Wright, C., & Ziliak, E. (2025). Orbits of unipotent elements in the generalized symmetric space defined by inner involutions of SL3(π½q) and SL4(π½q) for q = 2n. Journal of Algebra and Its Applications. https://doi.org/10.1142/S0219498826501355
Buell, C., Helminck, A., Klima, V., Schaefer, J., Wright, C., & Ziliak, E. (2020). Classifying the orbits of the generalized symmetric spaces for. Communications in Algebra, 48(4), 1744β1757. https://doi.org/10.1080/00927872.2019.1705471
Collins, J. B., Haas, R., Helminck, A. G., Lenarz, J., Pelatt, K. E., Saccon, S., & Welz, M. (2020). Extended symmetric spaces and ΞΈ-twisted involution graphs. Communications in Algebra, 48(6), 2293β2306. https://doi.org/10.1080/00927872.2019.1711106
Buell, C., Helminck, A. G., Klima, V., Schaefer, J., Wright, C., & Ziliak, E. (2017). On the structure of generalized symmetric spaces of SL2(Fq) and GL2(Fq). Note Di Matematica, 37(2), 1β10. https://doi.org/10.1285/i15900932v37n2p1
Buell, C., Helminck, A., Klima, V., Schaefer, J., Wright, C., & Ziliak, E. (2017). On the structure of generalized symmetric spaces of SLnFq). Communications in Algebra, 45(12), 5123β5136. https://doi.org/10.1080/00927872.2017.1296458
Benim, R. W., Helminck, A. G., & Ward, F. J. (2016). Erratum of "Isomorphy classes of involutions of SP(2n, k), n > 2". Journal of Lie Theory, 26(1), 293β295. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84955487887&partnerID=MN8TOARS
Benim, R. W., Dometrius, C. E., Helminck, A. G., & Wu, L. (2016). Isomorphy classes of involutions of SO(n, k, beta), n > 2. Journal of Lie Theory, 26(2), 383β438.
Benim, R. W., Dometrius, C. E., Helminck, A. G., & Wu, L. (2016). Isomorphy classes of involutions of SO(n, ΞΊ, Ξ²), n > 2. Journal of Lie Theory, 26(2), 383β438. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84983329156&partnerID=MN8TOARS
Benim, R. W., Helminck, A. G., & Ward, F. J. (2016). Isomorphy classes of involutions of SP(2n, k), n > 2 (vol 25, pg 903, 2015). Journal of Lie Theory, Vol. 26, pp. 293β295.
Benim, R. W., Helminck, A. G., & Ward, F. J. (2015). Isomorphy classes of involutions of SP(2n, k), n > 2. Journal of Lie Theory, 25(4), 903β947. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84929886770&partnerID=MN8TOARS
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2014). Cauchy problems related to integrable deformations of pseudo differential operators. JOURNAL OF GEOMETRY AND PHYSICS, 85, 196β205. https://doi.org/10.1016/j.geomphys.2014.05.004
Helminck, G. F., & Helminck, A. G. (2014). Infinite dimensional symmetric spaces and Lax equations compatible with the infinite Toda chain. JOURNAL OF GEOMETRY AND PHYSICS, 85, 60β74. https://doi.org/10.1016/j.geomphys.2014.05.023
Cunningham, K. K. A., Edgar, T., Helminck, A. G., Jones, B. F., Oh, H., Schwell, R., & Vasquez, J. F. (2014). On the structure of involutions and symmetric spaces of dihedral groups. Note Di Matematica, 34(2), 23β40. https://doi.org/10.1285/i15900932v34n2p23
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2013). Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective. THEORETICAL AND MATHEMATICAL PHYSICS, 174(1), 134β153. https://doi.org/10.1007/s11232-013-0011-7
Haas, R., & Helminck, A. G. (2012, June). Algorithms for Twisted Involutions in Weyl Groups. ALGEBRA COLLOQUIUM, Vol. 19, pp. 263β282. https://doi.org/10.1142/s100538671200017x
Cahn, P., Haas, R., Helminck, A., Li, J., & Schwartz, J. (2012). Permutation notations for the exceptional Weyl groupF4. Involve, a Journal of Mathematics, 5(1), 81β89. https://doi.org/10.2140/involve.2012.5.81
Haas, R., & Helminck, A. G. (2011). Admissible Sequences for Twisted Involutions in Weyl Groups. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 54(4), 663β675. https://doi.org/10.4153/cmb-2011-075-1
Helminck, A. G., Krasilβshchik, J., & Rubtsov, V. (2011). Dedication to Gerardus F. Helminck. Journal of Geometry and Physics, 61(9), 1631. https://doi.org/10.1016/j.geomphys.2011.04.003
Helminck, A. G., Krasilβshchik, J., & Rubtsov, V. (2011). Editors' preface for the topical issue on "The interface between integrability and quantization". Journal of Geometry and Physics, 61(9), 1632. https://doi.org/10.1016/j.geomphys.2011.04.002
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2011). Equivalent forms of multi component Toda hierarchies. JOURNAL OF GEOMETRY AND PHYSICS, 61(4), 847β873. https://doi.org/10.1016/j.geomphys.2010.11.013
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2011, September). Equivalent forms of multi component Toda hierarchies (Reprinted from JOURNAL OF GEOMETRY AND PHYSICS, vol 61, pg 847, 2011). JOURNAL OF GEOMETRY AND PHYSICS, Vol. 61, pp. 1755β1781. https://doi.org/10.1016/j.geomphys.2011.06.012
Helminck, A. G., & Schwarz, G. W. (2011). On generalized Cartan subspaces. TRANSFORMATION GROUPS, 16(3), 783β805. https://doi.org/10.1007/s00031-011-9151-8
Helminck, A. G. (2010). On Orbit Decompositions for Symmetric k-Varieties. SYMMETRY AND SPACES, Vol. 278, pp. 83β127. https://doi.org/10.1007/978-0-8176-4875-6_6
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). THE RELATIVE FRAME BUNDLE OF AN INFINITE-DIMENSIONAL FLAG VARIETY AND SOLUTIONS OF INTEGRABLE HIERARCHIES. THEORETICAL AND MATHEMATICAL PHYSICS, 165(3), 1610β1636. https://doi.org/10.1007/s11232-010-0133-0
Beun, S. L., & Helminck, A. G. (2009). On the Classification of Orbits of Symmetric Subgroups Acting on Flag Varieties of SL(2, k). COMMUNICATIONS IN ALGEBRA, 37(4), 1334β1352. https://doi.org/10.1080/00927870802466983
Helminck, A. G., & Schwarz, G. W. (2009). Real double coset spaces and their invariants. JOURNAL OF ALGEBRA, 322(1), 219β236. https://doi.org/10.1016/j.jalgebra.2009.01.028
Daniel, J. R., & Helminck, A. G. (2008). Algorithms for computations in local symmetric spaces. COMMUNICATIONS IN ALGEBRA, 36(5), 1758β1788. https://doi.org/10.1080/00927870801940434
Gagliardi, D., & Helminck, A. G. (2007, December). Algorithms for computing characters for symmetric spaces. ACTA APPLICANDAE MATHEMATICAE, Vol. 99, pp. 339β365. https://doi.org/10.1007/s10440-007-9171-5
Daniel, J. R., & Helminck, A. G. (2007). Computing the fine structure of real reductive symmetric spaces. JOURNAL OF SYMBOLIC COMPUTATION, 42(5), 497β510. https://doi.org/10.1016/j.jsc.2006.08.003
Haas, R., Helminck, A. G., & Rizki, N. (2007). Properties of twisted involutions in signed permutation notation. Journal of Combinatorial Mathematics and Combinatorial Computing, 62, 121β128. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78651544802&partnerID=MN8TOARS
Gagliardi, D., & Helminck, A. G. (2006). Implementation of algorithms for computing characters for
symmetric spaces. Congr. Numer., 180, 5β20.
Brenneman, K., Haas, R., & Helminck, A. G. (2006). Implementing an algorithm for the twisted involution poset for
Weyl groups. Congr. Numer., 182, 137β144.
Helminck, A. G., Wu, L., & Dometrius, C. E. (2006, January). Involutions of SL(n,k), (n < 2). ACTA APPLICANDAE MATHEMATICAE, Vol. 90, pp. 91β119. https://doi.org/10.1007/s10440-006-9032-7
Helminck, A. G., & Helminck, G. F. (2005, March). Multiplicity one for representations corresponding to spherical distribution vectors of class rho. ACTA APPLICANDAE MATHEMATICAE, Vol. 86, pp. 21β48. https://doi.org/10.1007/s10440-005-0461-5
Helminck, A. G., & Schwarz, G. W. (2004). Smoothness of quotients associated with a pair of commuting involutions. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 56(5), 945β962. https://doi.org/10.4153/CJM-2004-043-7
Helminck, A. G., & Wu, L. (2002). Classification of involutions of SL(2, k). COMMUNICATIONS IN ALGEBRA, 30(1), 193β203. https://doi.org/10.1081/AGB-120006486
Helminck, G. F., & Helminck, A. G. (2002, October 11). Hilbert flag varieties and their Kahler structure. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, Vol. 35, pp. 8531β8550. https://doi.org/10.1088/0305-4470/35/40/312
Helminck, A. G., & Schwarz, G. W. (2002, August). Orbits and invariants associated with a pair of spherical varieties: Some examples. ACTA APPLICANDAE MATHEMATICAE, Vol. 73, pp. 103β113. https://doi.org/10.1023/A:1019726804264
Helminck, A. G., & Helminck, G. F. (2002, August). Spherical distribution vectors. ACTA APPLICANDAE MATHEMATICAE, Vol. 73, pp. 39β57. https://doi.org/10.1023/A:1019762302447
Helminck, A. G., & Schwarz, G. W. (2001). Orbits and invariants associated with a pair of commuting involutions. DUKE MATHEMATICAL JOURNAL, 106(2), 237β279. https://doi.org/10.1215/s0012-7094-01-10622-4
Helminck, A. G. (2000). Computing orbits of minimal parabolic k-subgroups acting on symmetric k-varieties. JOURNAL OF SYMBOLIC COMPUTATION, 30(5), 521β553. https://doi.org/10.1006/jsco.2000.0395
Brion, M., & Helminck, A. G. (2000). On orbit closures of symmetric subgroups in flag varieties. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 52(2), 265β292. https://doi.org/10.4153/CJM-2000-012-9
Helminck, A. G. (2000). On the classification of k-involutions. ADVANCES IN MATHEMATICS, 153(1), 1β117. https://doi.org/10.1006/aima.1998.1884
Helminck, A. G., Hilgert, J., Neumam, A., & Olafsson, G. (1999). A conjugacy theorem for symmetric spaces. MATHEMATISCHE ANNALEN, 313(4), 785β791. https://doi.org/10.1007/s002080050282
Helminck, A. G., & Helminck, G. F. (1998). A class of parabolic k-subgroups associated with symmetric k-varieties. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 350(11), 4669β4691. https://doi.org/10.1090/S0002-9947-98-02029-7
Helminck, A. G. (1997). Tori invariant under an involutorial automorphism .2. ADVANCES IN MATHEMATICS, 131(1), 1β92. https://doi.org/10.1006/aima.1997.1633
Helminck, A. G. (1996). Computing B-orbits on G/H. Journal of Symbolic Computation, 21(2), 169β209. https://doi.org/10.1006/jsco.1996.0008
Helminck, G. F., & Helminck, A. G. (1995). Infinite-dimensional flag manifolds in integrable systems. Acta Applicandae Mathematicae, 41(1-3), 99β121. https://doi.org/10.1007/BF00996107
Helminck, A. G., & Helminck, G. F. (1994). Holomorphic line bundles over Hilbert flag varieties. In Algebraic groups and their generalizations: quantum and
infinite-dimensional methods (University Park, PA,
1991) (Vol. 56, pp. 349β375). Amer. Math. Soc., Providence, RI.
Helminck, A. G. (1994). Symmetric $k$-varieties. In Algebraic groups and their generalizations: classical methods
(University Park, PA, 1991) (Vol. 56, pp. 233β279). Amer. Math. Soc., Providence, RI.
Helminck, G. F., & Helminck, A. G. (1994). The Structure of Hilbert Flag Varieties Dedicated to the memory of our father. Publications of the Research Institute for Mathematical Sciences, 30(3), 401β441. https://doi.org/10.2977/prims/1195165905
Helminck, A. G., & Wang, S. P. (1993). On rationality properties of involutions of reductive groups. Advances in Mathematics, 99(1), 26β96. https://doi.org/10.1006/aima.1993.1019
Helminck, A. G. (1991). On groups with a Cartan involution. Proceedings of the Hyderabad Conference on Algebraic
Groups (Hyderabad, 1989), 151β192. Manoj Prakashan, Madras.
Helminck, A. G. (1991). Tori invariant under an involutorial automorphism, I. Advances in Mathematics, 85(1), 1β38. https://doi.org/10.1016/0001-8708(91)90048-C
Helminck, A. G. (1989). On the orbits of symmetric spaces under the action of parabolic subgroups. Invariant Theory, 435β447. https://doi.org/10.1090/conm/088/999998
Helminck, A. G. (1988). Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces. Advances in Mathematics, 71(1), 21β91. https://doi.org/10.1016/0001-8708(88)90066-7
Cohen, A. M., & Helminck, A. G. (1988). Trilinear alternating forms on a vector space of dimension 7. Communications in Algebra, 16(1), 1β25. https://doi.org/10.1080/00927878808823558
Helminck, A. G. (1986). A classification of semisimple symmetric pairs and their
restricted root system. In Lie algebras and related topics (Windsor, Ont., 1984) (Vol. 5, pp. 333β340). Amer. Math. Soc., Providence, RI.
Koornwinder, T. H., Hoogenboom, B., Cohen, A. M., Vries, J., & Helminck, A. G. (1982). The structure of real semisimple Lie groups (Vol. 49, p. v+141). Mathematisch Centrum, Amsterdam.