Luo Xiao Xiao, L., & Xiao, L. (2024). Sparse and integrative principal component analysis for multiview data. ELECTRONIC JOURNAL OF STATISTICS, 18(2), 3774–3824. https://doi.org/10.1214/24-EJS2281 Zou, H., Zeng, D., Xiao, L., & Luo, S. (2023). BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA. ANNALS OF APPLIED STATISTICS, 17(3), 2574–2595. https://doi.org/10.1214/23-AOAS1733 Li, R., & Xiao, L. (2023, September 4). Latent factor model for multivariate functional data. BIOMETRICS, Vol. 9. https://doi.org/10.1111/biom.13924 Zou, H., Xiao, L., Zeng, D., & Luo, S. (2023, February 20). Multivariate functional mixed model with MRI data: An application to Alzheimer's disease. STATISTICS IN MEDICINE, Vol. 2. https://doi.org/10.1002/sim.9683 Cui, E., Li, R., Crainiceanu, C. M., & Xiao, L. (2022, October 7). Fast Multilevel Functional Principal Component Analysis. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, Vol. 10. https://doi.org/10.1080/10618600.2022.2115500 Li, R., Xiao, L., Smirnova, E., Cui, E., Leroux, A., & Crainiceanu, C. M. (2022, May 1). Fixed-effects inference and tests of correlation for longitudinal functional data. STATISTICS IN MEDICINE, Vol. 5. https://doi.org/10.1002/sim.9421 Weaver, C., Xiao, L., & Lu, W. (2022, March 28). Functional data analysis for longitudinal data with informative observation times. BIOMETRICS, Vol. 3. https://doi.org/10.1111/biom.13646 Chen, H., Caffo, B., Stein-O'Brien, G., Liu, J., Langmead, B., Colantuoni, C., & Xiao, L. (2022, March 31). Two-stage linked component analysis for joint decomposition of multiple biologically related data sets. BIOSTATISTICS, Vol. 3. https://doi.org/10.1093/biostatistics/kxac005 Li, C., Xiao, L., & Luo, S. (2022). Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease. BIOMETRICS, 78(2), 435–447. https://doi.org/10.1111/biom.13427 Weaver, C., Xiao, L., & Lindquist, M. A. (2021, May 5). Single-index models with functional connectivity network predictors. BIOSTATISTICS, Vol. 5. https://doi.org/10.1093/biostatistics/kxab015 Xiao, L. (2020). Asymptotic properties of penalized splines for functional data. BERNOULLI, 26(4), 2847–2875. https://doi.org/10.3150/20-BEJ1209 Feng, Y., Xiao, L., Li, C., Chen, S. T., & Ohuma, E. O. (2020). Correlation models for monitoring fetal growth. STATISTICAL METHODS IN MEDICAL RESEARCH, 29(10), 2795–2813. https://doi.org/10.1177/0962280220905623 Li, C., Xiao, L., & Luo, S. (2020). Fast covariance estimation for multivariate sparse functional data. STAT, 9(1). https://doi.org/10.1002/sta4.245 Ohuma, E. O., Villar, J., Feng, Y., Xiao, L., Salomon, L., Barros, F. C., … Papageorghiou, A. T. (2021). Fetal growth velocity standards from the Fetal Growth Longitudinal Study of the INTERGROWTH-21 st Project. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 224(2). https://doi.org/10.1016/j.ajog.2020.07.054 Xiao, L., & Nan, Z. (2020). Uniform convergence of penalized splines. STAT, 9(1). https://doi.org/10.1002/sta4.297 Ma, W., Xiao, L., Liu, B., & Lindquist, M. A. (2021). A functional mixed model for scalar on function regression with application to a functional MRI study. BIOSTATISTICS, 22(3), 439–454. https://doi.org/10.1093/biostatistics/kxz046 Xiao, L. (2019). Asymptotic theory of penalized splines. ELECTRONIC JOURNAL OF STATISTICS, 13(1), 747–794. https://doi.org/10.1214/19-EJS1541 Li, C., & Xiao, L. (2019). Optimal design for classification of functional data. Canadian Journal of Statistics, 12. https://doi.org/10.1002/cjs.11531 Park, S. Y., Xiao, L., Willbur, J. D., Staicu, A.-M., & Jumbe, N. L. (2018). A joint design for functional data with application to scheduling ultrasound scans. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 122, 101–114. https://doi.org/10.1016/j.csda.2018.01.009 Chen, S. T., Xiao, L., & Staicu, A.-M. (2019). A smoothing-based goodness-of-fit test of covariance for functional data. BIOMETRICS, 75(2), 562–571. https://doi.org/10.1111/biom.13005 Xiao, L. (2018). Asymptotics of bivariate penalised splines. Journal of Nonparametric Statistics, 31(2), 289–314. https://doi.org/10.1080/10485252.2018.1563295 Grigsby, M. R., Di, J. R., Leroux, A., Zipunnikov, V., Xiao, L., Crainiceanu, C., & Checkley, W. (2018). Novel metrics for growth model selection. Emerging Themes in Epidemiology, 15. Anderson, C., Xiao, L., & Checkley, W. (2019). Using data from multiple studies to develop a child growth correlation matrix. STATISTICS IN MEDICINE, 38(19), 3540–3554. https://doi.org/10.1002/sim.7696 Bai, J., Di, C., Xiao, L., Evenson, K. R., LaCroix, A., Crainiceanu, C., & Buchner, D. M. (2017). AN ACTIVITY INDEX FOR RAW ACCELEROMETRY DATA AND ITS APPLICATION IN OLDER ADULTS. Innovation in Aging, 1(suppl_1), 1239–1239. https://doi.org/10.1093/geroni/igx004.4497 Leroux, A., Xiao, L., Crainiceanu, C., & Checkley, W. (2018). Dynamic prediction in functional concurrent regression with an application to child growth. STATISTICS IN MEDICINE, 37(8), 1376–1388. https://doi.org/10.1002/sim.7582 Xiao, L., Li, C., Checkley, W., & Crainiceanu, C. (2018). Fast covariance estimation for sparse functional data. STATISTICS AND COMPUTING, 28(3), 511–522. https://doi.org/10.1007/s11222-017-9744-8 Xiao, L., Li, C., Checkley, W., & Crainiceanu, C. (2018, May). Fast covariance estimation for sparse functional data (vol 28, pg 511, 2017). STATISTICS AND COMPUTING, Vol. 28, pp. 523–523. https://doi.org/10.1007/s11222-017-9768-0 Varma, V. R., Dey, D., Leroux, A., Di, J., Urbanek, J., Xiao, L., & Zipunnikov, V. (2017). Re-evaluating the effect of age on physical activity over the lifespan. PREVENTIVE MEDICINE, 101, 102–108. https://doi.org/10.1016/j.ypmed.2017.05.030 Park, S. Y., Staicu, A.-M., Xiao, L., & Crainiceanu, C. M. (2017). Simple fixed-effects inference for complex functional models. Biostatistics, 19(2), 137–152. https://doi.org/10.1093/biostatistics/kxx026 Varma, V. R., Dey, D., Leroux, A., Di, J., Urbanek, J., Xiao, L., & Zipunnikov, V. (2018, January). Total volume of physical activity: TAC, TLAC or TAC(lambda). https://doi.org/10.1016/j.ypmed.2017.10.028 Huang, L., Reiss, P. T., Xiao, L., Zipunnikov, V., Lindquist, M. A., & Crainiceanu, C. M. (2017). Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data. Biostatistics (Oxford, England), 18(2), 214–229. Bai, J., Di, C., Xiao, L., Evenson, K. R., LaCroix, A. Z., Crainiceanu, C. M., & Buchner, D. M. (2016). An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics. PLOS ONE, 11(8), 1–14. https://doi.org/10.1371/journal.pone.0160644 Hooker, G., Ramsay, J. O., & Xiao, L. (2016). CollocInfer: Collocation Inference in Differential Equation Models. Journal of Statistical Software, 75(2). https://doi.org/10.18637/jss.v075.i02 Huang, L., Reiss, P. T., Xiao, L., Zipunnikov, V., Lindquist, M. A., & Crainiceanu, C. M. (2016). Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data. Biostatistics, 8, kxw040. https://doi.org/10.1093/biostatistics/kxw040 Bien, J., Bunea, F., & Xiao, L. (2016). Convex Banding of the Covariance Matrix. Journal of the American Statistical Association, 111(514), 834–845. https://doi.org/10.1080/01621459.2015.1058265 Xiao, L., He, B., Koster, A., Caserotti, P., Lange-Maia, B., Glynn, N. W., … Crainiceanu, C. M. (2016). Movement prediction using accelerometers in a human population. BIOMETRICS, 72(2), 513–524. https://doi.org/10.1111/biom.12382 Yang, J., Shmuelof, L., Xiao, L., Krakauer, J. W., & Caffo, B. (2015). On tests of activation map dimensionality for fMRI-based studies of learning. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00085 Bunea, F., & Xiao, L. (2015). On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA. Bernoulli, 21(2), 1200–1230. https://doi.org/10.3150/14-bej602 Xiao, L., Zipunnikov, V., Ruppert, D., & Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26(1-2), 409–421. https://doi.org/10.1007/S11222-014-9485-X Ma, X., Xiao, L., & Wong, W. H. (2014). Learning regulatory programs by threshold SVD regression. Proceedings of the National Academy of Sciences, 111(44), 15675–15680. https://doi.org/10.1073/pnas.1417808111 Xiao, L., Huang, L., Schrack, J. A., Ferrucci, L., Zipunnikov, V., & Crainiceanu, C. M. (2014). Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics, 16(2), 352–367. https://doi.org/10.1093/biostatistics/kxu045 Xiao, L., Thurston, S. W., Ruppert, D., Love, T. M. T., & Davidson, P. W. (2014). Bayesian Models for Multiple Outcomes in Domains With Application to the Seychelles Child Development Study. Journal of the American Statistical Association, 109(505), 1–10. https://doi.org/10.1080/01621459.2013.830070 Xiao, L., Li, Y., & Ruppert, D. (2013). Fast bivariateP-splines: the sandwich smoother. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 577–599. https://doi.org/10.1111/rssb.12007