Long Ye Liu, Y., Xian, K., Zhang, X., Gao, M., Shi, Y., Zhou, K., … Ye, L. (2022). A Mixed-Ligand Strategy to Modulate P3HT Regioregularity for High-Efficiency Solar Cells. Macromolecules, 55(8), 3078–3086. https://doi.org/10.1021/acs.macromol.1c02404 Li, H., Liu, S., Wu, X., Qi, Q., Zhang, H., Meng, X., … Chen, Y. (2022). A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy & Environmental Science. https://doi.org/10.1039/D2EE00639A Gao, M., Zhang, K., He, C., Jiang, H., Li, X., Qi, Q., … Ye, L. (2022). A generic approach yields organic solar cells with enhanced efficiency and thermal stability. Aggregate. https://doi.org/10.1002/agt2.289 Ma, R., Zhou, K., Sun, Y., Liu, T., Kan, Y., Xiao, Y., … Gao, K. (2022). Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 5(2), 725–734. https://doi.org/10.1016/j.matt.2021.12.002 Liu, J., Qiao, J., Zhou, K., Wang, J., Gui, R., Xian, K., … Ye, L. (2022). An Aggregation‐Suppressed Polymer Blending Strategy Enables High‐Performance Organic and Quantum Dot Hybrid Solar Cells. Small, 4, 2201387. https://doi.org/10.1002/smll.202201387 An In Situ Film to Film Transformation Approach toward Highly Crystalline Covalent Organic Framework Films. (2022). CCS Chemistry. https://doi.org/10.31635/CCSCHEM.021.202101025 Brominated Polythiophene Reduces the Efficiency-Stability-Cost Gap of Organic and Quantum Dot Hybrid Solar Cells. (2022). Advanced Energy Materials. https://doi.org/10.1002/AENM.202201975 Xian, K., Liu, Y., Liu, J., Yu, J., Xing, Y., Peng, Z., … Ye, L. (2022). Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 10(7), 3418–3429. https://doi.org/10.1039/d1ta10161g Xiong, Y., Ye, L., & Zhang, C. (2022). Eco‐friendly solution processing of all‐polymer solar cells: Recent advances and future perspective. Journal of Polymer Science, 60(6), 945–960. https://doi.org/10.1002/pol.20210745 Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. (2022). Nano Energy. https://doi.org/10.1016/J.NANOEN.2022.107463 Zhou, K., Xian, K., & Ye, L. (2022). Morphology control in high‐efficiency all‐polymer solar cells. InfoMat, 4(4). https://doi.org/10.1002/inf2.12270 Gao, X., Ma, X., Liu, Z., Gao, J., Qi, Q., Yu, Y., … Liu, Z. (2022). Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.2c03196 Previews The rise of polythiophene photovoltaics. (2022). Joule. https://doi.org/10.1016/J.JOULE.2022.04.006 Wang, J., Liu, J., Zhou, K., Xian, K., Qi, Q., Zhao, W., … Ye, L. (2022). Processing Poly(3‐Hexylthiophene) Interlayer with Nonhalogenated Solvents for High‐Performance and Low‐Cost Quantum Dot Solar Cells. Solar RRL. https://doi.org/10.1002/solr.202200779 Gui, R., Liu, Y., Chen, Z., Wang, T., Chen, T., Shi, R., … Yin, H. (2022). Reproducibility in Time and Space—The Molecular Weight Effects of Polymeric Materials in Organic Photovoltaic Devices. Small Methods, 4, 2101548. https://doi.org/10.1002/smtd.202101548 Qi, Q., Zhong, Y., Liu, Y., Gao, M., Peng, Z., Li, S., … Ye, L. (2022). Revealing the Molar Mass Dependence on Thermal, Microstructural, and Electrical Properties of Direct Arylation Polycondensation Prepared Poly(3-hexylthiophene). ACS Applied Polymer Materials, 2. https://doi.org/10.1021/acsapm.1c01651 Liu, Y., Xian, K., Gui, R., Zhou, K., Liu, J., Gao, M., … Ye, L. (2022). Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules, 55(1), 133–145. https://doi.org/10.1021/acs.macromol.1c02187 Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low-Cost Incompletely Separated Fullerenes. (2022). Macromolecular Rapid Communications. https://doi.org/10.1002/MARC.202200139 Li, S., Zhou, K., Sun, B., Zhao, W., & Ye, L. (2022). Status and prospects of ternary all-polymer organic solar cells. Materials Today Energy. https://doi.org/10.1016/j.mtener.2022.101166 Gao, M., Liu, Y., Xian, K., Peng, Z., Zhou, K., Liu, J., … Ye, L. (2022). Thermally stable poly(3‐hexylthiophene): Nonfullerene solar cells with efficiency breaking 10%. Aggregate, 3. https://doi.org/10.1002/agt2.190 Wu, Q., Wang, W., Chen, Z., Xia, X., Gao, M., Shen, H., … Min, J. (2022). Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells. Journal of Materials Chemistry C. https://doi.org/10.1039/D1TC05548H Unraveling the Correlations between Mechanical Properties, Miscibility, and Film Microstructure in All-Polymer Photovoltaic Cells. (2022). Advanced Functional Materials. https://doi.org/10.1002/ADFM.202201781 Wang, Z., Gao, M., He, C., Shi, W., Deng, Y., Han, Y., … Geng, Y. (2022). Unraveling the Molar Mass Dependence of Shearing‐Induced Aggregation Structure of a High‐Mobility Polymer Semiconductor. Advanced Materials, 1, 2108255. https://doi.org/10.1002/adma.202108255 Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3-pentylthiophene) Solar Cells. (2022). Macromolecular Rapid Communications. https://doi.org/10.1002/MARC.202200229 When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. (2022). Chinese Journal of Polymer Science (English Edition). https://doi.org/10.1007/S10118-022-2762-9 Advances and prospective in thermally stable nonfullerene polymer solar cells. (2021). Science China Chemistry. https://doi.org/10.1007/S11426-021-1087-8 Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. (2021). Science China Chemistry. https://doi.org/10.1007/S11426-020-9890-6 Wu, J., Fan, Q., Xiong, M., Wang, Q., Chen, K., Liu, H., … Zhang, M. (2021). Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. NANO ENERGY, 82. https://doi.org/10.1016/j.nanoen.2020.105679 Challenges and recent advances in photodiodes-based organic photodetectors. (2021). Materials Today. https://doi.org/10.1016/J.MATTOD.2021.08.004 Gao, M., Wang, W., Hou, J., & Ye, L. (2021). Control of aggregated structure of photovoltaic polymers for high‐efficiency solar cells. Aggregate, 2(5). https://doi.org/10.1002/agt2.46 Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene Solar Cells Based on Ester-Substituted Polythiophene. (2021). Frontiers in Chemistry. https://doi.org/10.3389/FCHEM.2021.687996 Chen, F., Zhang, Y., Wang, Q., Gao, M., Kirby, N., Peng, Z., … Ye, L. (2021). High T g Polymer Insulator Yields Organic Photovoltaic Blends with Superior Thermal Stability at 150 o C. Chinese Journal of Chemistry. https://doi.org/10.1002/cjoc.202100270 Zhao, Y., Liu, T., Wu, B., Zhang, S., Prine, N., Zhang, L., … Cao, Y. (2021). High-Performance All-Polymer Solar Cells and Photodetectors Enabled by a High-Mobility n-Type Polymer and Optimized Bulk-Heterojunction Morphology. Chemistry of Materials, 33(10), 3746–3756. https://doi.org/10.1021/acs.chemmater.1c00825 Ma, L., Yao, H., Wang, J., Xu, Y., Gao, M., Zu, Y., … Hou, J. (2021). Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie, 133(29), 16124–16130. https://doi.org/10.1002/ange.202102622 Ma, L., Yao, H., Wang, J., Xu, Y., Gao, M., Zu, Y., … Hou, J. (2021). Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie International Edition, 60(29), 15988–15994. https://doi.org/10.1002/anie.202102622 Cheng, X., Li, M., Liang, Z., Gao, M., Ye, L., & Geng, Y. (2021). Implications of Crystallization Temperatures of Organic Small Molecules in Optimizing Nonfullerene Solar Cell Performance. ACS Applied Energy Materials, 7. https://doi.org/10.1021/acsaem.1c01657 Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm(2) V-1 s(-1). (2021). Science China Chemistry. https://doi.org/10.1007/S11426-021-9991-0 Ma, L., Zhang, S., Wang, J., Ren, J., Gao, M., Zhang, J., … Hou, J. (2021). Miscibility Control by Tuning Electrostatic Interactions in Bulk Heterojunction for Efficient Organic Solar Cells. ACS Materials Letters, 7, 1276–1283. https://doi.org/10.1021/acsmaterialslett.1c00328 Peng, Z., Jiang, K., Qin, Y., Li, M., Balar, N., Brendan T. O'Connor, … Geng, Y. (2021). Modulation of Morphological, Mechanical, and Photovoltaic Properties of Ternary Organic Photovoltaic Blends for Optimum Operation. ADVANCED ENERGY MATERIALS, 11(8). https://doi.org/10.1002/aenm.202003506 Zhang, L., Huang, X., Duan, C., Peng, Z., Ye, L., Kirby, N., … Cao, Y. (2021). Morphology evolution with polymer chain propagation and its impacts on device performance and stability of non-fullerene solar cells. Journal of Materials Chemistry A. https://doi.org/10.1039/D0TA10163J Near-infrared absorbing non-fullerene acceptors with unfused D-A-D core for efficient organic solar cells. (2021). Organic Electronics. https://doi.org/10.1016/J.ORGEL.2021.106131 Wu, J., Liu, Q., Ye, L., Guo, X., Fan, Q., Lv, J., … Wong, W.-Y. (2021). New Electron Acceptor with End-Extended Conjugation for High-Performance Polymer Solar Cells. ENERGY & FUELS, 35(23), 19061–19068. https://doi.org/10.1021/acs.energyfuels.1c02470 Li, Y., Huang, X., Ding, K., Sheriff, H. K. M., Jr., Ye, L., Liu, H., … Forrest, S. R. (2021). Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. NATURE COMMUNICATIONS, 12(1). https://doi.org/10.1038/s41467-021-25718-w Liu, J., Xian, K., Ye, L., & Zhou, Z. (2021). Open‐Circuit Voltage Loss in Lead Chalcogenide Quantum Dot Solar Cells. Advanced Materials, 6, 2008115. https://doi.org/10.1002/adma.202008115 Optimization of Monomer Molecular Structure for Polymer Electrodes Fabricated through in-situ Electro-Polymerization Strategy. (2021). ChemSusChem. https://doi.org/10.1002/CSSC.202101553 Guo, X., Fan, Q., Wu, J., Li, G., Peng, Z., Su, W., … Li, Y. (2021). Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar cells with Enhanced Fill Factor. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(5), 2322–2329. https://doi.org/10.1002/anie.202010596 P3HT-Based Organic Solar Cells with a Photoresponse to 1000 nm Enabled by Narrow Band Gap Nonfullerene Acceptors with High HOMO Levels. (2021). ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C21089 Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. (2021). Science China Chemistry. https://doi.org/10.1007/S11426-021-1094-Y Quadrupole Moment Induced Morphology Control Via a Highly Volatile Small Molecule in Efficient Organic Solar Cells. (2021). Advanced Functional Materials. https://doi.org/10.1002/ADFM.202010535 Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. (2021). Nano Energy. https://doi.org/10.1016/J.NANOEN.2020.105611 Arneson, C., Huang, X., Huang, X., Fan, D., Gao, M., Ye, L., … Forrest, S. R. (2021). Relationship between charge transfer state electroluminescence and the degradation of organic photovoltaics. APPLIED PHYSICS LETTERS, 118(6). https://doi.org/10.1063/5.0037710 Remove the water-induced traps toward improved performance in organic solar cells. (2021). Science China Materials. https://doi.org/10.1007/S40843-021-1703-4 Balar, N., Rech, J. J., Siddika, S., Song, R., Schrickx, H. M., Sheikh, N., … Brendan T. O'Connor. (2021, October 8). Resolving the Molecular Origin of Mechanical Relaxations in Donor-Acceptor Polymer Semiconductors. ADVANCED FUNCTIONAL MATERIALS, Vol. 10. https://doi.org/10.1002/ADFM.202105597 Revealing the Side-Chain-Dependent Ordering Transition of Highly Crystalline Double-Cable Conjugated Polymers. (2021). Angewandte Chemie International Edition. https://doi.org/10.1002/ANIE.202111192 Li, M., Wang, Q., Liu, J., Geng, Y., & Ye, L. (2021). Sequential deposition enables high-performance nonfullerene organic solar cells. Materials Chemistry Frontiers. https://doi.org/10.1039/D1QM00407G Zou, Y., & Ye, L. (2021). Stabilizing the microstructure for Y6-series nonfullerene solar cells. Chem, 7(11), 2853–2854. https://doi.org/10.1016/j.chempr.2021.10.009 Zhang, Y., Pan, L., Peng, Z., Deng, W., Zhang, B., Yuan, X., … Cao, Y. (2021). Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A. https://doi.org/10.1039/D1TA03161A Ye, L., Ke, H., & Liu, Y. (2021). The renaissance of polythiophene organic solar cells. Trends in Chemistry, 3(12), 1074–1087. https://doi.org/10.1016/j.trechm.2021.09.008 Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of High-Efficiency Organic Solar Cells. (2021). Advanced Materials. https://doi.org/10.1002/ADMA.202106732 Liu, Y., Xian, K., Peng, Z., Gao, M., Shi, Y., Deng, Y., … Ye, L. (2021). Tuning the molar mass of P3HT via direct arylation polycondensation yields optimal interaction and high efficiency in nonfullerene organic solar cells. Journal of Materials Chemistry A. https://doi.org/10.1039/D1TA02253A Peng, Z., Ye, L., & Ade, H. (2021, December 1). Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. MATERIALS HORIZONS, Vol. 9. https://doi.org/10.1039/D0MH00837K Zhang, B., Song, X., Li, Y., Li, Y., Peng, Z., Ye, L., & Chen, L. (2020). 2D covalent organic framework thin films via interfacial self-polycondensation of an A2B2 type monomer. Chemical Communications. https://doi.org/10.1039/D0CC00758G Zhang, B., Yu, Y., Zhou, J., Wang, Z., Tang, H., Xie, S., … Cao, Y. (2020). 3,4-Dicyanothiophene-a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells. ADVANCED ENERGY MATERIALS, 10(12). https://doi.org/10.1002/aenm.201904247 Jiang, C., Huang, X., Sun, B., Li, Y., Gao, M., Ye, L., … Fan, J. (2020). A 3D nonfullerene electron acceptor with a 9,9 ' -bicarbazole backbone for high -efficiency organic solar cells. ORGANIC ELECTRONICS, 84. https://doi.org/10.1016/j.orgel.2020.105784 A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells. (2020). Advanced Materials. https://doi.org/10.1002/ADMA.202004183 Guo, Q., Lin, J., Liu, H., Dong, X., Guo, X., Ye, L., … Li, Y. (2020). Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. NANO ENERGY, 74. https://doi.org/10.1016/j.nanoen.2020.104861 Sun, R., Guo, J., Wu, Q., Zhang, Z., Yang, W., Guo, J., … Min, J. (2020). Correction: A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy & Environmental Science. https://doi.org/10.1039/C9EE90064K Sui, Y., Shi, Y., Deng, Y., Li, R., Bai, J., Wang, Z., … Geng, Y. (2020). Direct Arylation Polycondensation of Chlorinated Thiophene Derivatives to High-Mobility Conjugated Polymers. Macromolecules, 53(22), 10147–10154. https://doi.org/10.1021/acs.macromol.0c02206 Efficient As-Cast Polymer Solar Cells with High and Stabilized Fill Factor. (2020). Solar Rrl. https://doi.org/10.1002/SOLR.202000275 Pan, L., Liu, T., Wang, J., Ye, L., Luo, Z., Ma, R., … Cao, Y. (2020). Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 32(17), 7309–7317. https://doi.org/10.1021/acs.chemmater.0c02133 Ye, L., Xiong, Y., Zhang, M., Guo, X., Guan, H., Zou, Y., & Ade, H. (2020). Enhanced efficiency in nonfullerene organic solar cells by tuning molecular order and domain characteristics. Nano Energy, 77, 105310. https://doi.org/10.1016/j.nanoen.2020.105310 Pei, D., Wang, Z., Peng, Z., Zhang, J., Deng, Y., Han, Y., … Geng, Y. (2020). Impact of Molecular Weight on the Mechanical and Electrical Properties of a High-Mobility Diketopyrrolopyrrole-Based Conjugated Polymer. Macromolecules, 53(11), 4490–4500. https://doi.org/10.1021/acs.macromol.0c00209 Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8 %. (2020). Angewandte Chemie International Edition. https://doi.org/10.1002/ANIE.202009272 Wang, Q., Qin, Y., Li, M., Ye, L., & Geng, Y. (2020). Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for High‐Performance Solar Cells. Advanced Energy Materials, 10, 2002572. https://doi.org/10.1002/aenm.202002572 Yang, C., Zhang, S., Ren, J., Gao, M., Bi, P., Ye, L., & Hou, J. (2020). Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy & Environmental Science. https://doi.org/10.1039/D0EE01763A Xiong, Y., Booth, R. E., Kim, T., Ye, L., Liu, Y., Dong, Q., … Ade, H. (2020). Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and High‐Efficiency Semitransparent Organic Photovoltaics. Solar RRL, 4(10), 2000328. https://doi.org/10.1002/solr.202000328 Liang, Z., Li, M., Wang, Q., Qin, Y., Stuard, S. J., Peng, Z., … Geng, Y. (2020). Optimization Requirements of Efficient Polythiophene:Nonfullerene Organic Solar Cells. JOULE, 4(6), 1278–1295. https://doi.org/10.1016/J.JOULE.2020.04.014 Zheng, Z., Yao, H., Ye, L., Xu, Y., Zhang, S., & Hou, J. (2020). PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Materials Today, 35, 115–130. https://doi.org/10.1016/j.mattod.2019.10.023 Zhang, L., Deng, W., Wu, B., Ye, L., Sun, X., Wang, Z., … Cao, Y. (2020). Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers. ACS Applied Materials & Interfaces, 12(1), 753–762. https://doi.org/10.1021/acsami.9b18048 Balar, N., Siddika, S., Kashani, S., Peng, Z., Rech, J. J., Ye, L., … Brendan T. O'Conner. (2020). Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. CHEMISTRY OF MATERIALS, 32(15), 6540–6549. https://doi.org/10.1021/acs.chemmater.0c01910 Gao, M., Liang, Z., Geng, Y., & Ye, L. (2020). Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chemical Communications. https://doi.org/10.1039/D0CC04869K Yu, R., Yao, H., Hong, L., Gao, M., Ye, L., & Hou, J. (2020). TCNQ as a volatilizable morphology modulator enables enhanced performance in non-fullerene organic solar cells. Journal of Materials Chemistry C. https://doi.org/10.1039/C9TC04892H Xu, Y., Yao, H., Ma, L., Hong, L., Li, J., Liao, Q., … Hou, J. (2020). Tuning the Hybridization of Local Exciton and Charge‐Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie International Edition, 59(23), 9004–9010. https://doi.org/10.1002/anie.201915030 Xu, Y., Yao, H., Ma, L., Hong, L., Li, J., Liao, Q., … Hou, J. (2020). Tuning the Hybridization of Local Exciton and Charge‐Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 132(23), 9089–9095. https://doi.org/10.1002/ange.201915030 Kang, Q., Ye, L., Xu, B., An, C., Stuard, S. J., Zhang, S., … Hou, J. (2019). A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm(2) Organic Solar Cells. JOULE, 3(1), 227–239. https://doi.org/10.1016/j.joule.2018.10.024 Sun, R., Guo, J., Wu, Q., Zhang, Z., Yang, W., Guo, J., … Min, J. (2019). A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy & Environmental Science, 12(10), 3118–3132. https://doi.org/10.1039/C9EE02295C Jiang, K., Wei, Q., Lai, J. Y. L., Peng, Z., Kim, H. K., Yuan, J., … Yan, H. (2019). Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. JOULE, 3(12), 3020–3033. https://doi.org/10.1016/j.joule.2019.09.010 Yang, W., Ye, L., Yao, F., Jin, C., Ade, H., & Chen, H. (2019). Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. NANO RESEARCH, 12(4), 777–783. https://doi.org/10.1007/s12274-019-2288-9 Wu, H., Fan, H., Liu, W., Chen, S., Yang, C., Ye, L., … Zhu, X. (2019). Conjugation-Curtailing of Benzodithionopyran-Cored Molecular Acceptor Enables Efficient Air-Processed Small Molecule Solar Cells. SMALL, 15(44). https://doi.org/10.1002/smll.201902656 Duan, C., Peng, Z., Colberts, F. J. M., Pang, S., Ye, L., Awartani, O. M., … al. (2019). Efficient Thick-Film Polymer Solar Cells with Enhanced Fill Factors via Increased Fullerene Loading. ACS APPLIED MATERIALS & INTERFACES, 11(11), 10794–10800. https://doi.org/10.1021/acsami.9b00337 Yang, C., Liang, N., Ye, L., Ade, H., Yuan, X., & Hou, J. (2019). Enhanced JSC of P3HT-based non-fullerene polymer solar cells by modulating aggregation effect of P3HT in solution state. Organic Electronics, 68, 15–21. https://doi.org/10.1016/j.orgel.2019.01.047 Hu, H., Ye, L., Ghasemi, M., Balar, N., Rech, J. J., Stuard, S. J., … Ade, H. (2019). Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Two-Donor Polymer Blend. ADVANCED MATERIALS, 31(17). https://doi.org/10.1002/adma.201808279 Wu, H., Fan, H., Xu, S., Ye, L., Guo, Y., Yi, Y., … Zhu, X. (2019). Isomery-Dependent Miscibility Enables High-Performance All-Small-Molecule Solar Cells. SMALL, 15(1). https://doi.org/10.1002/smll.201804271 Zhang, S., Ma, L., Ye, L., Qin, Y., Xu, Y., Liu, X., … Hou, J. (2019). Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules, 52(20), 7929–7938. https://doi.org/10.1021/acs.macromol.9b01742 Angunawela, I., Ye, L., Bin, H., Zhang, Z.-G., Gadisa, A., Li, Y., & Ade, H. (2019). Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. MATERIALS CHEMISTRY FRONTIERS, 3(1), 137–144. https://doi.org/10.1039/c8qm00503f Ye, L., Li, W., Guo, X., Zhang, M., & Ade, H. (2019). Polymer Side-Chain Variation Induces Microstructural Disparity in Nonfullerene Solar Cells. Chemistry of Materials, 31(17), 6568–6577. https://doi.org/10.1021/acs.chemmater.9b00174 Ye, L., Li, S., Liu, X., Zhang, S., Ghasemi, M., Xiong, Y., … Ade, H. (2019). Quenching to the Percolation Threshold in Organic Solar Cells. JOULE, 3(2), 443–458. https://doi.org/10.1016/j.joule.2018.11.006 Zhu, Y., Gadisa, A., Peng, Z., Ghasemi, M., Ye, L., Xu, Z., … Ade, H. (2019). Rational Strategy to Stabilize an Unstable High-Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component. ADVANCED ENERGY MATERIALS, 9(20). https://doi.org/10.1002/aenm.201900376 Qin, Y., Zhang, S., Xu, Y., Ye, L., Wu, Y., Kong, J., … al. (2019). Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. ADVANCED ENERGY MATERIALS, 9(35). https://doi.org/10.1002/aenm.201901823 Ye, L., Xiong, Y., Chen, Z., Zhang, Q., Fei, Z., Henry, R., … al. (2019). Sequential Deposition of Organic Films with Eco-Compatible Solvents Improves Performance and Enables Over 12%-Efficiency Nonfullerene Solar Cells. ADVANCED MATERIALS, 31(17). https://doi.org/10.1002/adma.201808153 Soft X-Ray Scattering Characterization of Polymer Semiconductors. (2019). CONJUGATED POLYMERS: PERSPECTIVE, THEORY, AND NEW MATERIALS, VOL 2, EDITION. https://doi.org/10.1201/9780429190520-13 Soft X-Ray Scattering Characterization of Polymer Semiconductors. (2019). CONJUGATED POLYMERS: PROPERTIES, PROCESSING, AND APPLICATIONS, VOL 1, EDITION. Retrieved from https://publons.com/wos-op/publon/49456059/ Balar, N., Rech, J. J., Henry, R., Ye, L., Ade, H., You, W., & O’Connor, B. T. (2019). The Importance of Entanglements in Optimizing the Mechanical and Electrical Performance of All-Polymer Solar Cells. Chemistry of Materials, 31(14), 5124–5132. https://doi.org/10.1021/acs.chemmater.9b01011 Rech, J. J., Bauer, N., Dirkes, D., Kaplan, J., Peng, Z., Zhang, H., … You, W. (2019). The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells. Materials Chemistry Frontiers, 3(8), 1642–1652. https://doi.org/10.1039/C9QM00314B Cheng, X., Li, M., Guo, Z., Yu, J., Lu, G., Bu, L., … Geng, Y. (2019). “Twisted” conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A. https://doi.org/10.1039/C9TA07760J Li, W., Ye, L., Li, S., Yao, H., Ade, H., & Hou, J. (2018). A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor. ADVANCED MATERIALS, 30(16). https://doi.org/10.1002/adma.201707170 Li, S., Ye, L., Zhao, W., Yan, H., Yang, B., Liu, D., … Hou, J. (2018). A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 140(23), 7159–7167. https://doi.org/10.1021/jacs.8b02695 Qin, Y., Ye, L., Zhang, S., Zhu, J., Yang, B., Ade, H., & Hou, J. (2018). A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. JOURNAL OF MATERIALS CHEMISTRY A, 6(10), 4324–4330. https://doi.org/10.1039/c8ta00368h Song, X., Gasparini, N., Ye, L., Yao, H., Hou, J., Ade, H., & Baran, D. (2018). Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Letters, 3(3), 669–676. https://doi.org/10.1021/ACSENERGYLETT.7B01266 Bin, H., Yao, J., Yang, Y., Angunawela, I., Sun, C., Gao, L., … Li, Y. (2018). High-Efficiency All-Small-Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilyl-Thienyl Conjugated Side Chains. ADVANCED MATERIALS, 30(27). https://doi.org/10.1002/adma.201706361 Feng, K., Yang, G. F., Xu, X. P., Zhang, G. J., Yan, H., Awartani, O., … al. (2018). High-Performance Wide Bandgap Copolymers Using an EDOT Modified Benzodithiophene Donor Block with 10.11% Efficiency. ADVANCED ENERGY MATERIALS, 8(6). https://doi.org/10.1002/aenm.201602773 Hu, H., Jiang, K., Chow, P. C. Y., Ye, L., Zhang, G., Li, Z., … Yan, H. (2018). Influence of Donor Polymer on the Molecular Ordering of Small Molecular Acceptors in Nonfullerene Polymer Solar Cells. ADVANCED ENERGY MATERIALS, 8(5). https://doi.org/10.1002/aenm.201701674 Ziffer, M. E., Jo, S. B., Zhong, H., Ye, L., Liu, H., Lin, F., … Ginger, D. S. (2018). Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 140(31), 9996–10008. https://doi.org/10.1021/jacs.8b05834 Peng, Z., Jiao, X., Ye, L., Li, S., Rech, J. J., You, W., … Ade, H. (2018). Measuring Temperature-Dependent Miscibility for Polymer Solar Cell Blends: An Easily Accessible Optical Method Reveals Complex Behavior. CHEMISTRY OF MATERIALS, 30(12), 3943–3951. https://doi.org/10.1021/acs.chemmater.8b00889 Ye, L., Collins, B. A., Jiao, X., Zhao, J., Yan, H., & Ade, H. (2018). Miscibility-Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. ADVANCED ENERGY MATERIALS, 8(28). https://doi.org/10.1002/aenm.201703058 Ye, L., Hu, H., Ghasemi, M., Wang, T., Collins, B. A., Kim, J.-H., … Ade, H. (2018). Quantitative relations between interaction parameter, miscibility and function in organic solar cells. NATURE MATERIALS, 17(3), 253–260. https://doi.org/10.1038/s41563-017-0005-1 Xiong, Y., Ye, L., Gadisa, A., Zhang, Q., Rech, J. J., You, W., & Ade, H. (2018). Revealing the Impact of F4-TCNQ as Additive on Morphology and Performance of High-Efficiency Nonfullerene Organic Solar Cells. Advanced Functional Materials, 29(1), 1806262. https://doi.org/10.1002/adfm.201806262 Ye, L., Xiong, Y., Zhang, Q., Li, S., Wang, C., Jiang, Z., … Ade, H. (2018). Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 30(8), 1705485. https://doi.org/10.1002/adma.201705485 Ye, L., Xiong, Y., Zhang, Q. Q., Li, S. S., Wang, C., Jiang, Z., … Ade, H. (2018). Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Advanced Materials, 30(8). https://doi.org/10.1002/adma.201870054 Bin, H., Yang, Y., Zhang, Z.-G., Ye, L., Ghasem, M., Chen, S., … Li, Y. (2017). 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 139(14), 5085–5094. https://doi.org/10.1021/jacs.6b12826 Zhong, H., Ye, L., Chen, J.-Y., Jo, S. B., Chueh, C.-C., Carpenter, J. H., … Jen, A. K.-Y. (2017). A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. JOURNAL OF MATERIALS CHEMISTRY A, 5(21), 10517–10525. https://doi.org/10.1039/c7ta02391j Yao, H., Ye, L., Hou, J., Jang, B., Han, G., Cui, Y., … Hou, J. (2017). Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open-Circuit Voltage. Advanced Materials, 29(21), 1700254. https://doi.org/10.1002/ADMA.201700254 Bauer, N., Zhang, Q., Zhao, J., Ye, L., Kim, J.-H., Constantinou, I., … You, W. (2017). Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. JOURNAL OF MATERIALS CHEMISTRY A, 5(10), 4886–4893. https://doi.org/10.1039/c6ta10450a Ye, L., Jiao, X., Zhang, S., Yao, H., Qin, Y., Ade, H., & Hou, J. (2017). Control of Mesoscale Morphology and Photovoltaic Performance in Diketopyrrolopyrrole-Based Small Band Gap Terpolymers. ADVANCED ENERGY MATERIALS, 7(3). https://doi.org/10.1002/aenm.201601138 Li, S., Ye, L., Zhao, W., Liu, X., Zhu, J., Ade, H., & Hou, J. (2017). Design of a New Small‐Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. Advanced Materials, 29(46), 1704051. https://doi.org/10.1002/ADMA.201704051 Bin, H., Yang, Y., Peng, Z., Ye, L., Yao, J., Zhong, L., … Li, Y. (2017). Effect of Alkylsilyl Side-Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 8(8), 1702324. https://doi.org/10.1002/AENM.201702324 Zhao, W. C., Ye, L., Li, S. S., Liu, X. Y., Zhang, S. Q., Zhang, Y., … al. (2017). Environmentally-friendly solvent processed fullerenefree organic solar cells enabled by screening halogen-free solvent additives. SCIENCE CHINA-MATERIALS, 60(8), 697–706. https://doi.org/10.1007/s40843-017-9080-x Ye, L., Zhao, W., Li, S., Mukherjee, S., Carpenter, J. H., Awartani, O., … Ade, H. (2017). High-Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multi-Length Scale Morphology and Device Performance. ADVANCED ENERGY MATERIALS, 7(7). https://doi.org/10.1002/aenm.201602000 Liu, X., Ye, L., Zhao, W., Zhang, S., Li, S., Su, G. M., … Hou, J. (2017). Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells. MATERIALS CHEMISTRY FRONTIERS, 1(10), 2057–2064. https://doi.org/10.1039/c7qm00182g Ghasemi, M., Ye, L., Zhang, Q., Yan, L., Kim, J.-H., Awartani, O., … Ade, H. (2017). Panchromatic Sequentially Cast Ternary Polymer Solar Cells. Advanced Materials, 29(4), 1604603. https://doi.org/10.1002/adma.201604603 Zhang, Y., Ye, L., & Hou, J. (2017). [Review of Precise Characterization of Performance Metrics of Organic Solar Cells]. SMALL METHODS, 1(8). https://doi.org/10.1002/smtd.201700159 Ye, L., Xiong, Y., Li, S., Ghasemi, M., Balar, N., Turner, J., … al. (2017). Precise Manipulation of Multilength Scale Morphology and Its Influence on Eco-Friendly Printed All-Polymer Solar Cells. Advanced Functional Materials, 27(33), 1702016. https://doi.org/10.1002/adfm.201702016 Jiao, X., Ye, L., & Ade, H. (2017). Quantitative Morphology-Performance Correlations in Organic Solar Cells: Insights from Soft X-Ray Scattering. ADVANCED ENERGY MATERIALS, 7(18). https://doi.org/10.1002/aenm.201700084 Balar, N., Xiong, Y., Ye, L., Li, S., Nevola, D., Dougherty, D. B., … O’Connor, B. T. (2017). Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers. ACS Applied Materials & Interfaces, 9(50), 43886–43892. https://doi.org/10.1021/ACSAMI.7B13719 Li, S., Ye, L., Zhao, W., Zhang, S., Ade, H., & Hou, J. (2017). Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Small-Molecule Electron Acceptors for Photovoltaic Cells. ADVANCED ENERGY MATERIALS, 7(17). https://doi.org/10.1002/aenm.201700183 Zhang, S., Ye, L., & Hou, J. (2016). Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Well-Known PBDTTT Polymers. Advanced Energy Materials, 6(11). https://doi.org/10.1002/aenm.201502529 Ye, L., Li, S., & Hou, J. (2016). CHAPTER 2: New polymer donors for polymer solar cells. In RSC Polymer Chemistry Series (pp. 32–77). https://doi.org/10.1039/9781782622307-00032 Yao, H., Zhang, H., Ye, L., Zhao, W., Zhang, S., & Hou, J. (2016). Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers. ACS Applied Materials and Interfaces, 8(6), 3575–3583. https://doi.org/10.1021/acsami.5b07311 Wang, Q., Zhang, S., Xu, B., Ye, L., Yao, H., Cui, Y., … Hou, J. (2016). Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry-an Asian Journal, 11(19), 2650–2655. https://doi.org/10.1002/asia.201501387 Li, S., Ye, L., Zhao, W., Zhang, S., Mukherjee, S., Ade, H., & Hou, J. (2016). Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. ADVANCED MATERIALS, 28(42), 9423-+. https://doi.org/10.1002/adma.201602776 Li, S., Zhang, H., Zhao, W., Ye, L., Yao, H., Yang, B., … Hou, J. (2016). Green-Solvent-Processed All-Polymer Solar Cells Containing a Perylene Diimide-Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 6(5). https://doi.org/10.1002/aenm.201501991 Zhang, S., Ye, L., Zhang, H., & Hou, J. (2016). Green-solvent-processable organic solar cells. Materials Today, 19(9), 533–543. https://doi.org/10.1016/j.mattod.2016.02.019 Ye, L., Xiong, Y., Yao, H., Dinku, A. G., Zhang, H., Li, S., … Ade, H. (2016). High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution. Chemistry of Materials, 28(20), 7451–7458. https://doi.org/10.1021/acs.chemmater.6b03083 Zhang, H., Yao, H., Zhao, W., Ye, L., & Hou, J. (2016). High-Efficiency Polymer Solar Cells Enabled by Environment-Friendly Single-Solvent Processing. Advanced Energy Materials, 6(6). https://doi.org/10.1002/aenm.201502177 Li, S., Ye, L., Wang, Q., Zhang, S., Zhao, W., & Hou, J. (2016). Improving the open-circuit voltage of alkylthio-substituted photovoltaic polymers via post-oxidation. Organic Electronics, 28, 39–46. https://doi.org/10.1016/j.orgel.2015.10.004 Ye, L., Jiao, X., Zhao, W., Zhang, S., Yao, H., Li, S., … Hou, J. (2016). Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. CHEMISTRY OF MATERIALS, 28(17), 6178–6185. https://doi.org/10.1021/acs.chemmater.6b02222 Yao, H., Ye, L., Zhang, H., Li, S., Zhang, S., & Hou, J. (2016). Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 116(12), 7397–7457. https://doi.org/10.1021/acs.chemrev.6b00176 New Polymer Donors for Polymer Solar Cells. (2016). POLYMER PHOTOVOLTAICS: MATERIALS, PHYSICS, AND DEVICE ENGINEERING. Retrieved from https://publons.com/wos-op/publon/7528283/ Ye, L., Jiao, X., Zhang, H., Li, S., Yao, H., Ade, H., & Hou, J. (2015). 2D-Conjugated Benzodithiophene-Based Polymer Acceptor: Design, Synthesis, Nanomorphology, and Photovoltaic Performance. MACROMOLECULES, 48(19), 7156–7163. https://doi.org/10.1021/acs.macromol.5b01537 Zhao, W., Ye, L., Zhang, S., Sun, M., & Hou, J. (2015). A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry a, 3(24), 12723–12729. https://doi.org/10.1039/c4ta07029a Zhao, W., Ye, L., Zhang, S., Yao, H., Sun, M., & Hou, J. (2015). An Easily Accessible Cathode Buffer Layer for Achieving Multiple High Performance Polymer Photovoltaic Cells. Journal of Physical Chemistry C, 119(49), 27322–27329. https://doi.org/10.1021/acs.jpcc.5b09575 Ye, L., Hou, J., & Li, Y. (2015). Conjugated Polymer Photovoltaic Materials. In Organic Optoelectronic Materials (Vol. 91, pp. 195–239). https://doi.org/10.1007/978-3-319-16862-3_5 Ye, L., Sun, K., Jiang, W., Zhang, S., Zhao, W., Yao, H., … Hou, J. (2015). Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. Acs Applied Materials & Interfaces, 7(17), 9274–9280. https://doi.org/10.1021/acsami.5b02012 Zhao, K., Ye, L., Zhao, W., Zhang, S., Yao, H., Xu, B., … Hou, J. (2015). Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. Journal of Materials Chemistry C, 3(37), 9565–9571. https://doi.org/10.1039/c5tc02172c Liu, D., Zhao, W., Zhang, S., Ye, L., Zheng, Z., Cui, Y., … Hou, J. (2015). Highly Efficient Photovoltaic Polymers Based on Benzodithiophene and Quinoxaline with Deeper HOMO Levels. Macromolecules, 48(15), 5172–5178. https://doi.org/10.1021/acs.macromol.5b00829 Zheng, Z., Zhang, S., Zhang, M., Zhao, K., Ye, L., Chen, Y., … Hou, J. (2015). Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 27(7), 1189–1194. https://doi.org/10.1002/ADMA.201404525 Yao, H., Ye, L., Fan, B., Huo, L., & Hou, J. (2015). Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Science China-Materials, 58(3), 213–222. https://doi.org/10.1007/s40843-015-0036-3 Ye, L., Jiao, X., Zhou, M., Zhang, S., Yao, H., Zhao, W., … Hou, J. (2015). Manipulating Aggregation and Molecular Orientation in All-Polymer Photovoltaic Cells. ADVANCED MATERIALS, 27(39), 6046–6054. https://doi.org/10.1002/adma.201503218 Yao, H., Zhang, H., Ye, L., Zhao, W., Zhang, S., & Hou, J. (2015). Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 48(11), 3493–3499. https://doi.org/10.1021/acs.macromol.5b00649 Zhang, H., Ye, L., & Hou, J. (2015). Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Polymer International, 64(8), 957–962. https://doi.org/10.1002/pi.4895 Zhang, S., Uddin, M. A., Zhao, W., Ye, L., Woo, H. Y., Liu, D., … Hou, J. (2015). Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b '] dithiophene-based photovoltaic polymers. Polymer Chemistry, 6(14), 2752–2760. https://doi.org/10.1039/c5py00071h Ye, L., Fan, B., Zhang, S., Li, S., Yang, B., Qin, Y., … Hou, J. (2015). Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China-Materials, 58(12), 953–960. https://doi.org/10.1007/s40843-015-0102-x Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China-Chemistry, 58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x Realizing over 10% efficiency in polymer solar cell by device optimization. (2015). Science China Chemistry. https://doi.org/10.1007/S11426-014-5273-X Ye, L., Jiang, W., Zhao, W., Zhang, S., Cui, Y., Wang, Z., & Hou, J. (2015). Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 17, 295–303. https://doi.org/10.1016/j.orgel.2014.12.020 Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. (2015). Organic Electronics. https://doi.org/10.1016/J.ORGEL.2014.12.020 Ye, L., Zhou, C., Meng, H., Wu, H.-H., Lin, C.-C., Liao, H.-H., … Hou, J. (2015). Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 3(3), 564–569. https://doi.org/10.1039/c4tc02449d Jiang, W., Ye, L., Li, X., Xiao, C., Tan, F., Zhao, W., … Wang, Z. (2014). Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 50(8), 1024–1026. https://doi.org/10.1039/c3cc47204c Cheng, P., Ye, L., Zhao, X., Hou, J., Li, Y., & Zhan, X. (2014). Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy & Environmental Science, 7(4), 1351–1356. https://doi.org/10.1039/c3ee43041c Guo, X., Zhang, M., Ma, W., Ye, L., Zhang, S., Liu, S., … Hou, J. (2014). Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTT-C-T/PC71BM. ADVANCED MATERIALS, 26(24), 4043–4049. https://doi.org/10.1002/adma.201400411 Ye, L., Zhang, S., Zhao, W., Yao, H., & Hou, J. (2014). Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 26(12), 3603–3605. https://doi.org/10.1021/cm501513n Wang, Q., Zhang, S., Ye, L., Cui, Y., Fan, H., & Hou, J. (2014). Investigations of the Conjugated Polymers Based on Dithienogermole (DTG) Units for Photovoltaic Applications. Macromolecules, 47(16), 5558–5565. https://doi.org/10.1021/ma500831z Ye, L., Zhang, S., Huo, L., Zhang, M., & Hou, J. (2014). Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 47(5), 1595–1603. https://doi.org/10.1021/ar5000743 Ma, W., Tumbleston, J. R., Ye, L., Wang, C., Hou, J., & Ade, H. (2014). Photovoltaics: Quantification of Nano- and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency,Jsc, and FF in Polymer:Fullerene Solar Cells (Adv. Mater. 25/2014). Advanced Materials, 26(25), 4399–4399. https://doi.org/10.1002/adma.201470171 Ma, W., Tumbleston, J. R., Ye, L., Wang, C., Hou, J., & Ade, H. (2014). Quantification of Nano- and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, J(SC), and FF in Polymer:Fullerene Solar Cells. ADVANCED MATERIALS, 26(25), 4234–4241. https://doi.org/10.1002/adma.201400216 Ye, L., Jiang, W., Zhao, W., Zhang, S., Qian, D., Wang, Z., & Hou, J. (2014). Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Non-fullerene Acceptor-based Solar Cells. Small, 10(22), 4658–4663. https://doi.org/10.1002/smll.201401082 Zhang, S., Ye, L., Zhao, W., Liu, D., Yao, H., & Hou, J. (2014). Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure. Macromolecules, 47(14), 4653–4659. https://doi.org/10.1021/ma500829r Zhao, W., Ye, L., Zhang, S., Fan, B., Sun, M., & Hou, J. (2014). Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 4. https://doi.org/10.1038/srep06570 Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., … Yao, J. (2013). A Potential Perylene Diimide Dimer-Based Acceptor Material for Highly Efficient Solution-Processed Non-Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 25(40), 5791-+. https://doi.org/10.1002/adma.201300897 Ye, L., Zhang, S., Qian, D., Wang, Q., & Hou, J. (2013). Application of Bis-PCBM in Polymer Solar Cells with Improved Voltage. Journal of Physical Chemistry C, 117(48), 25360–25366. https://doi.org/10.1021/jp409216e Huo, L., Li, Z., Guo, X., Wu, Y., Zhang, M., Ye, L., … Hou, J. (2013). Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 4(10), 3047–3056. https://doi.org/10.1039/c3py00074e Ma, W., Ye, L., Zhang, S., Hou, J., & Ade, H. (2013). Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 1(33), 5023. https://doi.org/10.1039/c3tc30679h Zhang, S., Ye, L., Wang, Q., Li, Z., Guo, X., Huo, L., … Hou, J. (2013). Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended pi Conjugation. Journal of Physical Chemistry C, 117(19), 9550–9557. https://doi.org/10.1021/jp312450p Qian, D., Ma, W., Li, Z., Guo, X., Zhang, S., Ye, L., … Hou, J. (2013). Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(23), 8464–8467. https://doi.org/10.1021/ja402971d Ye, L., Jing, Y., Guo, X., Sun, H., Zhang, S., Zhang, M., … Hou, J. (2013). Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 117(29), 14920–14928. https://doi.org/10.1021/jp404395q Subnanosecond charge photogeneration and recombination in polyfluorene copolymer-fullerene solar cell: Effects of electric field. (2013). Optics Express, 21(5), A241–A249. Zhang, W., Huang, Y., Xing, Y.-D., Jing, Y., Ye, L., Fu, L.-M., … Zhang, J.-P. (2013). Subnanosecond charge photogeneration and recombination in polyfluorene copolymerfullerene solar cell: Effects of electric field. Optics Express, 21(SUPPL.2). https://doi.org/10.1364/OE.21.00A241 Duan, R., Ye, L., Guo, X., Huang, Y., Wang, P., Zhang, S., … Hou, J. (2012). Application of Two-Dimensional Conjugated Benzo 1,2-b:4,5-b ' dithiophene in Quinoxaline-Based Photovoltaic Polymers. Macromolecules, 45(7), 3032–3038. https://doi.org/10.1021/ma300060z Huo, L., Ye, L., Wu, Y., Li, Z., Guo, X., Zhang, M., … Hou, J. (2012). Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules, 45(17), 6923–6929. https://doi.org/10.1021/ma301254x Qian, D., Ye, L., Zhang, M., Liang, Y., Li, L., Huang, Y., … Hou, J. (2012). Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules, 45(24), 9611–9617. https://doi.org/10.1021/ma301900h Ye, L., Zhang, S., Ma, W., Fan, B., Guo, X., Huang, Y., … Hou, J. (2012). From Binary to Ternary Solvent: Morphology Fine-tuning of D/A Blends in PDPP3T-based Polymer Solar Cells. ADVANCED MATERIALS, 24(47), 6335–6341. https://doi.org/10.1002/adma.201202855 Huang, Y., Zhang, M., Ye, L., Guo, X., Han, C. C., Li, Y., & Hou, J. (2012). Molecular energy level modulation by changing the position of electron-donating side groups. Journal of Materials Chemistry, 22(12), 5700–5705. https://doi.org/10.1039/c2jm16474d